Intraganglionic laminar endings (IGLEs) and intramuscular arrays (IMAs), the two putative mechanoreceptors that the vagus nerve supplies to the gastrointestinal smooth muscle, have been characterized almost exclusively in the rat. To provide normative inventories of these afferents for the mouse, the authors examined the endings in the stomach and small intestine of three strains used as backgrounds for gene manipulations (i.e., C57, 129/SvJ, and WBB6). Animals received nodose ganglion injections of wheat germ agglutinin-horseradish peroxidase or dextran-tetramethylrhodamine conjugated to biotin. The horseradish peroxidase tissue was processed with tetramethylbenzidine and was used to map the distributions and densities of the two endings; the dextran material was counterstained with c-Kit immunohistochemistry to assess interactions between intramuscular arrays and interstitial cells of Cajal. IGLEs and IMAs constituted the vagal innervation of mouse gastric and duodenal smooth muscle. IGLE morphology and distributions, with peak densities in the corpus-antrum, were similar in the three strains of mice and comparable to those observed in rats. IMAs varied in complexity from region to region but tended to be simpler (fewer telodendria) in mice than in rats. IMAs were most concentrated in the forestomach and sphincters in mice, as in rats, but the topographic distributions of the endings varied both between strains of mice (subtly) and between species (more dramatically). IMAs appeared to make appositions with both interstitial cells and smooth muscle fibers. This survey should make it practical to assay the effects of genetic (e.g., knockout) and experimental (e.g., regeneration) manipulations affecting visceral afferents and their target tissues.
To assess whether afferent vagal intramuscular arrays (IMAs), putative gastrointestinal mechanoreceptors, form contacts with interstitial cells of Cajal of the intramuscular type (ICC-IM) and to describe any such contacts, electron microscopic analyses were performed on the external muscle layers of the fundus containing dextran-labelled diaminobenzidin (DAB)-stained IMAs. Special staining and embedding techniques were developed to preserve ultrastructural features. Within the muscle layers, IMA varicosities were observed in nerve bundles traversing major septa without contact with ICC-IM, contacting unlabelled neurites and glial cells. IMA varicosities were encountered in minor septa in contact with ICC-IM which were not necessarily in close contact with muscle cells. In addition, IMA varicosities were observed within muscle bundles in close contact with ICC-IM which were in gap junction contact with muscle cells. IMAs formed varicosities containing predominantly small agranular vesicles, occasionally large granular vesicles and prejunctional thickenings in apposition to ICC-IM processes, indicating communication between ICC and IMA via synapse-like contacts. Taken together, these different morphological features are consistent with a hypothesized mechanoreceptor role for IMA-ICC complexes. Intraganglionic laminar ending varicosities contacted neuronal somata and dendrites in the myenteric plexus of the fundus, but no contacts with ICC associated with Auerbach's plexus were encountered.
A new protocol that provides a sensitive, reliable, and practical test for completeness of selective as well as total subdiaphragmatic vagotomies is described. This protocol employs a microscopic inventory of retrogradely labeled neurons in topographically distinct regions of the dorsal motor nucleus to determine which vagal branches have been surgically destroyed. Physiological experiments for validation and observations on the use of the method with 243 rats indicate that the protocol described can assess total as well as at least 11 different types of selective subdiaphragmatic vagotomies, including surgeries for which no assays have existed. Furthermore, the technique can identify cases where a branch is only partially destroyed. Other strengths include the facts that the protocol provides a simultaneous inventory of the different branches in a single test, is not influenced by the general health of the animal, and does not interfere with concurrent behavioral or physiological tests. Limitations include the facts that the tracer inventory requires a minimal survival period, can only be done postmortem, and has low resolution for cuts of the vagal hepatic branch. Aspects of the protocol critical to its implementation, including specifics for using the fluorescent tracer true blue, are discussed. Other tracers with similar diffusion characteristics, such as fluoro-gold and fast blue, can be used with equal effectiveness with this protocol.
Intraganglionic laminar endings (IGLEs) and intramuscular arrays (IMAs) are the two putative mechanoreceptors that the vagus nerve supplies to gastrointestinal smooth muscle. To examine whether neurotrophin-4 (NT-4)-deficient mice, which have only 45% of the normal number of nodose ganglion neurons, exhibit selective losses of these endings and potentially provide a model for assessing their functional roles, we inventoried IGLEs and IMAs in the gut wall. Vagal afferents were labeled by nodose ganglion injections of wheat germ agglutinin-horseradish peroxidase, and a standardized sampling protocol was used to map the terminals in the stomach, duodenum, and ileum. NT-4 mutants had a substantial organ-specific reduction of IGLEs; whereas the morphologies and densities of both IGLEs and IMAs in the stomach were similar to wild-type patterns, IGLEs were largely absent in the small intestine (90 and 81% losses in duodenum and ileum, respectively). Meal pattern analyses revealed that NT-4 mutants had increased meal durations with solid food and increased meal sizes with liquid food. However, daily total food intake and body weight remained normal because of compensatory changes in other meal parameters. These findings indicate that NT-4 knock-out mice have a selective vagal afferent loss and suggest that intestinal IGLEs (1) may participate in short-term satiety, probably by conveying feedback about intestinal distension or transit to the brain, (2) are not essential for long-term control of feeding and body weight, and (3) play different roles in regulation of solid and liquid diet intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.