This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters V [.Ix gradient with respect to vector x b[.] 3x partial derivative with respect to x American Institute of Aeronautics and Astronautics 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF REPORT OFTHIS
This article describes the development and use of Background Oriented Schlieren on a full-scale supersonic jet in flight. A series of flight tests was performed in October, 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date.
Blunt-forebody pressure data are used to study the behavior of the NASA Dryden Flight Research Center flush airdata sensing (FADS) pressure model and High Alpha Research Vehicle
The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near-and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.* Note that the use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either express or implied, by the National Aeronautics and Space Administration.† This material is declared a work of the U.S. Government and is not subject to copyright protection in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.