Conjugated linoleic acid (CLA) has been demonstrated to reduce body fat in animals. However, the mechanism by which this reduction occurs is unknown. Leptin may mediate the effect of CLA to decrease body fat. We assessed the effects of 64 d of CLA supplementation (3 g/d) on circulating leptin, insulin, glucose, and lactate concentrations in healthy women. Appetite was assessed as a physiological correlate of changes in circulating leptin levels. Analysis of plasma leptin concentrations adjusted for adiposity by using fat mass as a covariate showed that CLA supplementation significantly decreased circulating leptin concentrations in the absence of any changes of fat mass. Mean leptin levels decreased over the first 7 wk and then returned to baseline levels over the last 2 wk of the study in the CLA-treated group. Appetite parameters measured at around the time when the greatest decreases in leptin levels were observed showed no significant differences between supplementation and baseline determinations in the CLA-supplemented group or between the CLA and placebo-supplemented groups. There was a nonsignificant trend for mean insulin levels to increase toward the end of the supplementation period in CLA-treated subjects. CLA did not affect plasma glucose and lactate over the treatment period. Thus, 64 d of CLA supplementation in women produced a transient decrease in leptin levels but did not alter appetite. CLA did not affect these parameters in a manner that promoted decreases of adiposity.
Micronutrients such as zinc, selenium, iron, copper, beta-carotene, vitamins A, C, and E, and folic acid can influence several components of innate immunity. Select micronutrients play an important role in alteration of oxidant-mediated tissue injury, and phagocytic cells produce reactive oxidants as part of the defense against infectious agents. Thus, adequate micronutrients are required to prevent damage of cells participating in innate immunity. Deficiencies in zinc and vitamins A and D may reduce natural killer cell function, whereas supplemental zinc or vitamin C may enhance their activity. The specific effects of micronutrients on neutrophil functions are not clear. Select micronutrients may play a role in innate immunity associated with some disease processes. Future studies should focus on issues such as age-related micronutrient status and innate immunity, alterations of micronutrients in disease states and their effect on innate immunity, and the mechanisms by which micronutrients alter innate immunity.
Obesity increases the risk of developing multiple myeloma (MM). Adiponectin is a cytokine produced by adipocytes, but paradoxically decreased in obesity, that has been implicated in MM progression. Herein, we evaluated how prolonged exposure to adiponectin affected the survival of MM cells as well as putative signaling mechanisms. Adiponectin activates protein kinase A (PKA), which leads to decreased AKT activity and increased AMP-activated protein kinase (AMPK) activation. AMPK, in turn, induces cell cycle arrest and apoptosis. Adiponectin-induced apoptosis may be mediated, at least in part, by the PKA/AMPK-dependent decline in the expression of the enzyme acetyl-CoA-carboxylase (ACC), which is essential to lipogenesis. Supplementation with palmitic acid, the preliminary end product of fatty acid synthesis, rescues MM cells from adiponectin-induced apoptosis. Furthermore, 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an ACC inhibitor, exhibited potent antiproliferative effects on MM cells that could also be inhibited by fatty acid supplementation. Thus, adiponectin's ability to reduce survival of MM cells appears to be mediated through its ability to suppress lipogenesis. Our findings suggest that PKA/AMPK pathway activators, or inhibitors of ACC, may be useful adjuvants to treat MM. Moreover, the antimyeloma effect of adiponectin supports the concept that hypoadiponectinemia, as occurs in obesity, promotes MM tumor progression.
Ceramide, the basic structural unit of sphingolipids, controls the balance between cell growth and death by inducing apoptosis. We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H2O2) or by short-chain ceramide analogs, induces apoptosis of lung epithelial cells. Here we elucidate the link between caspase-3 activation, at the execution phase, and ceramide accumulation, at the commitment phase of apoptosis in A549 human lung adenocarcinoma cells. The induction of ceramide accumulation by various triggers of ceramide generation, such as H2O2, C6-ceramide, or UDP-glucose-ceramide glucosyltransferase inhibitordl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, triggered the activation of caspase-3. This ceramide elevation also induced the cleavage of the death substrate poly(ADP-ribose) polymerase and was followed by apoptotic cell death. Ceramide-mediated apoptosis was blocked by a general caspase inhibitor, Boc-d-fluoromethylketone, and by overexpression of the antiapoptotic protein Bcl-2. Notably, overexpression of Bcl-2 reduced the basal cellular levels of ceramide and prevented the induction of ceramide generation by C6-ceramide, which implies ceramide generation as a possible target for the antiapoptotic effects of Bcl-2.
A significant number of climbers sought healthcare after injury. A majority of climbers who sought treatment were referred to subspecialist providers. About one-half of climbers were symptomatic when they returned to climbing and developed chronic problems after injury. Factors associated with slower return to climbing included increasing age, smoking, fractures, and surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.