A large number of emerging contaminants (ECs) are known to persist in surface waters, and create pressure on wastewater treatment works (WWTW) for their effective removal. Although a large database for the levels of these pollutants in water systems exist globally, there is still a lack in the correlation of the levels of these pollutants with possible long-term adverse health effects in wildlife and humans, such as endocrine disruption. The current study detected a total of 55 ECs in WWTW influent surface water, 41 ECs in effluent, and 40 ECs in environmental waters located upstream and downstream of the plant. A list of ECs persisted through the WWTW process, with 28% of all detected ECs removed by less than 50%, and 18% of all ECs were removed by less than 25%. Negative mass balances of some pharmaceuticals and metabolites were observed within the WWTW, suggesting possible back-transformation of ECs during wastewater treatment. Three parental illicit drug compounds were detected within the influent of the WWTW, with concentrations ranging between 27.6 and 147.0 ng L for cocaine, 35.6-120.6 ng L for mephedrone, and 270.9-450.2 ng L for methamphetamine. The related environmental risks are also discussed for some ECs, with particular reference to their ability to disrupt endocrine systems. The current study propose the potential of the pharmaceuticals carbamazepine, naproxen, diclofenac and ibuprofen to be regarded as priority ECs for environmental monitoring due to their regular detection and persistence in environmental waters and their possible contribution towards adverse health effects in humans and wildlife.
Globally, water resources are under constant threat of being polluted by a diverse range of man-made chemicals, and South Africa is no exception. These contaminants can have detrimental effects on both human and wildlife health. It is increasingly evident that several chemicals may modulate endocrine system pathways in vertebrate species, and these are collectively referred to as endocrine disrupting contaminants (EDCs). Although the endocrine-disrupting effect of water pollutants has been mainly linked to agricultural pesticides and industrial effluents, other pollutants such as pharmaceuticals and personal care products (PPCPs) are largely unnoticed, but also pose a potentially significant threat. Here we present for the first time in a South African context, a summarised list of PPCPs and other EDCs detected to date within South African water systems, as well as their possible endocrine-disrupting effect in-vitro and in-vivo. This review addresses other factors which should be investigated in future studies, including endocrine disruption, PPCP metabolites, environmental toxicology, and antibiotic resistance. The challenges of removing EDCs and other pollutants at South African wastewater treatment works (WWTWs) are also highlighted. The need for focused research involving both in-vitro and in-vivo studies to detect PPCPs in water systems, and to delineate adverse outcome pathways (AOPs) of priority PPCPs to aid in environmental impact assessment (EIA), are discussed.
Arbuscular mycorrhizal (AM) C-costs in grapevines were investigated. Dormant vines rely on stored C for initial growth. Therefore AM colonisation costs would compete with plant growth for available C reserves. One-year-old grapevines, colonised with Glomus etunicatum (Becker and Gerdemann), were cultivated under glasshouse conditions. The C-economy and P utilisation of the symbiosis were sequentially analysed. AM colonisation, during the 0-67 day growth period, used more stem C relative to root C, which resulted in lower shoot growth. The decline in AM colonisation during the period of 67-119 days coincided with stem C replenishment and higher shoot growth. Construction costs of AM plants and root C allocation increased with root P uptake. The efficiency of P utilisation was lower in AM roots. The reliance of AM colonisation on stem C declined with a decrease in colonisation, providing more C for the refilling of stem carbohydrate reserves and shoot growth. Once established, the AM symbiosis increased P uptake at the expense of refilling of root C reserves. Although higher root C allocation increased plant construction costs, AM roots were more efficient at P utilisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.