Environmental Impact Assessment (EIA) is a broad process that emerged from the National Environment Policy Act, 1970 in the U.S. Its primary objective is to generate information on the likely impacts of a project on all aspects of the environment and used in agency decision making and in the long run protect the environment and achieve sustainable development. EIA practice in Uganda was formally established through the National Environment Act, 1995 and now in practice for over 25 years. However, there is increasing level of water pollution especially Lake Victoria, rivers, streams, aquifers and soils. This research reviewed the institutional, legal and regulatory framework for EIA, related literature and EIA documents especially EIA reports and conducted key EIA stakeholders survey using questionnaires to identify capacity and practice issues. The results revealed that, there was gap between law and practice arising from inadequate and ineffective public participation, weak follow-up, low key stakeholder's capacity, political interference, lack of SEA practice and not embracing EIA in a transboundary context. However, there is fairly good and comprehensive institutional, legislative and regulatory framework for EIA, good local governance structures, adequate staffing, robust national planning framework, active non-state actors and regional groupings. In order to maximize the potential of EIA as a means for achieving the SDGs, we recommended measures to address the challenges facing the EIA practice as well as utilize the existing opportunities within the context in which EIA is applied.
Background Every evening, chimpanzees (Pan troglodytes) build a sleeping platform so called “nest” by intertwining branches of tree. Most of chimpanzees’ communities studied have a preference for tree species in which they nest. As female mosquitoes are feeding on the blood of their host at nighttime, chimpanzees may prevent being disturbed and bitten by mosquitoes by selecting tree species having properties to repel them. Methods To test the hypothesis that chimpanzees choose tree species for their aromatic properties, data related to 1,081 nesting trees built between 2017 and 2019 in the Sebitoli community of Kibale National Park (Uganda) were analysed. The 10 most used trees were compared to the 10 most common trees in the habitat that were not preferred for nesting. Leaves from the 20 trees species were collected and hydro-distillated to obtain essential oils and one of the by-products for behavioural bioassays against females of the African mosquito, Anopheles gambiae. Results Sebitoli chimpanzees showed tree preferences: 10 species correspond to more than 80% of the nesting trees. Out of the essential oil obtained from the 10 nesting trees, 7 extracts for at least one concentration tested showed spatial repellency, 7 were irritant by contact and none were toxic. In the other hand, for the abundant trees in their habitat not used by chimpanzees, only 3 were repellent and 5 irritants. Discussion and conclusion This study contributes to evidence that chimpanzees, to avoid annoying mosquitoes, may select their nesting trees according to their repellent properties (linked to chemical parameters), a potential inspiration for human health.
Background Ticks and tick-borne pathogens significantly impact both human and animal health and therefore are of major concern to the scientific community. Knowledge of tick-borne pathogens is crucial for prescription of mitigation measures. In Africa, much research on ticks has focused on domestic animals. Little is known about ticks and their pathogens in wild habitats and wild animals like the endangered chimpanzee, our closest relative. Methods In this study, we collected ticks in the forested habitat of a community of 100 chimpanzees living in Kibale National Park, Western Uganda, and assessed how their presence and abundance are influenced by environmental factors. We used non-invasive methods of flagging the vegetation and visual search of ticks both on human team members and in chimpanzee nests. We identified adult and nymph ticks through morphological features. Molecular techniques were used to detect and identify tick-borne piroplasmids and bacterial pathogens. Results A total of 470 ticks were collected, which led to the identification of seven tick species: Haemaphysalis parmata (68.77%), Amblyomma tholloni (20.70%), Ixodes rasus sensu lato (7.37%), Rhipicephalus dux (1.40%), Haemaphysalis punctaleachi (0.70%), Ixodes muniensis (0.70%) and Amblyomma paulopunctatum (0.35%). The presence of ticks, irrespective of species, was influenced by temperature and type of vegetation but not by relative humidity. Molecular detection revealed the presence of at least six genera of tick-borne pathogens (Babesia, Theileria, Borrelia, Cryptoplasma, Ehrlichia and Rickettsia). The Afrotopical tick Amblyomma tholloni found in one chimpanzee nest was infected by Rickettsia sp. Conclusions In conclusion, this study presented ticks and tick-borne pathogens in a Ugandan wildlife habitat whose potential effects on animal health remain to be elucidated. Graphical Abstract
Frugivorous primates have developed several strategies to deal with wild fruit scarcity, such as modifying their activity budget or enlarging their diet. Agricultural expansion threatens primate habitats and populations (e.g., disease transmission, agrochemical exposure), but it also increases crop feeding opportunities. We aimed at understanding whether maize presence close to the natural habitat of chimpanzees, a threatened species, would lead to significant behavioral modifications. We monitored 20 chimpanzees over 37 months in Kibale National Park, Uganda, with maize gardens at the forest edge. Based on focal nest-to-nest data, we analyzed their diet, activity budget, and energy balance depending on wild fruit and maize availability. We found that the Sebitoli area is a highly nutritive habitat for chimpanzees, with large and caloric wild fruits available all year long. The chimpanzees opportunistically consume maize and exploit it by resting less during maize season. However, no significant variation was found in daily paths and energy expenditures according to maize availability. No behavioral or energy modification was observed regarding wild resources either. Despite the availability of nutritious domestic resources, chimpanzees still exploit wild fruits and do not limit their movements. Thus, their contribution to seed dispersal and forest regeneration in this area is not affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.