Although cigarette smoke has been epidemiologically associated with lung cancer in humans for many years, animal models of cigarette smoke-induced lung cancer have been lacking. This study demonstrated that life time whole body exposures of female B6C3F1 mice to mainstream cigarette smoke at 250 mg total particulate matter/m(3) for 6 h per day, 5 days a week induces marked increases in the incidence of focal alveolar hyperplasias, pulmonary adenomas, papillomas and adenocarcinomas. Cigarette smoke-exposed mice (n = 330) had a 10-fold increase in the incidence of hyperplastic lesions, and a 4.6-fold (adenomas and papillomas), 7.25-fold (adenocarcinomas) and 5-fold (metastatic pulmonary adenocarcinomas) increase in primary lung neoplasms compared with sham-exposed mice (n = 326). Activating point mutations in codon 12 of the K-ras gene were identified at a similar rate in tumors from sham-exposed mice (47%) and cigarette smoke-exposed mice (60%). The percentages of transversion and transition mutations were similar in both the groups. Hypermethylation of the death associated protein (DAP)-kinase and retinoic acid receptor (RAR)-beta gene promoters was detected in tumors from both sham- and cigarette smoke-exposed mice, with a tendency towards increased frequency of RAR-beta methylation in the tumors from the cigarette smoke-exposed mice. These results emphasize the importance of the activation of K-ras and silencing of DAP-kinase and RAR-beta in lung cancer development, and confirm the relevance of this mouse model for studying lung tumorigenesis.
B6C3F1 female mice were exposed to cigarette smoke (CS) (250 mg/m3 total particulate material) or filtered air (FA), 6 hours/day, 5 days/week, for 6, 7, or 10 weeks, or to CS for 6 weeks, then FA for 1 or 4 additional weeks. Exposure to CS increased macrophages, neutrophils, lymphocytes, and matrix metalloproteinase (MMP)-2 and MMP-9 content in bronchoalveolar lavage fluid. Partial recovery of most lavage parameters (except lymphocytes) was observed 1 week after cessation of CS exposure with further reductions after 4 weeks, but interstitial inflammation persisted longer. These results support a role for MMPs in CS-induced emphysema and indicate that smoking cessation allows restoration toward normal homeostasis.
Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 2000 Cummins ISB 5.9L diesel engine coupled to a dynamometer and operated on a slightly modified heavy-duty Federal Test Procedure cycle. Exposures were conducted to one clean air control and four diesel exhaust levels maintained at four different dilution rates (300:1, 100:1, 30:1, 10:1) that yielded particulate mass concentrations of 30, 100, 300, and 1000 microg/m3. Exposures at the four dilutions were characterized for particle mass, particle size distribution (reported elsewhere), detailed chemical speciation of gaseous, semivolatile, and particle-phase inorganic and organic compounds. Target analytes included metals, inorganic ions and gases, organic and elemental carbon, alkanes, alkenes, aromatic and aliphatic acids, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAH), oxygenated PAH, nitrogenated PAH, isoprenoids, carbonyls, methoxyphenols, sugar derivatives, and sterols. The majority of the mass of material in the exposure atmospheres was gaseous nitrogen oxides and carbon monoxide, with lesser amounts of volatile organics and particle mass (PM) composed of carbon (approximately 90% of PM) and ions (approximately 10% of PM). Measured particle organic species accounted for about 10% of total organic particle mass and were mostly alkanes and aliphatic acids. Several of the components in the exposure atmosphere scaled in concentration with dilution but did not scale precisely with the dilution rate because of background from the rodents and scrubbed dilution air, interaction of animal derived emissions with diesel exhaust components, and day-to-day variability in the output of the engine. Rodent-derived ammonia reacted with exhaust to form secondary inorganic particles (at different rates dependent on dilution), and rodent respiration accounted for volatile organics (especially carbonyls and acids) in the same range as the diesel exhaust at the lowest exhaust exposure concentrations. Day-to-day variability in the engine output was implicated partially for differences of several components, including some of the particle bound organics. Though these observations have likely occurred in nearly all inhalation exposure atmospheres that contain complex mixtures of material, the speciations conducted here illustrate many of them for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.