We have previously developed a canine in vivo model of the long QT syndrome (LQTS) using the neurotoxin anthopleurin A (AP-A), which acts by slowing sodium channel inactivation. The recent discovery of a genetic mutation in the cardiac sodium channel in some patients with the congenital LQTS, resulting in abnormal gating behavior similar to sodium channels exposed to AP-A, provides a strong endorsement of this animal model as a valid surrogate to the clinical syndrome of LQTS. In the present study, we conducted high-resolution tridimensional isochronal mapping of both activation and repolarization patterns in puppies exposed to AP-A that developed LQTS and polymorphic ventricular tachyarrhythmias (VTs). To map repolarization, we measured activation-recovery intervals (ARIs) using multiple unipolar extracellular electrograms. We demonstrated, for the first time in vivo, the existence of spatial dispersion of repolarization in the ventricular wall and differences in regional recovery in response to cycle-length changes that were markedly exaggerated after AP-A administration. Analysis of tridimensional activation patterns showed that the initial beat of polymorphic VT consistently arose as focal activity from a subendocardial site, whereas subsequent beats were due to successive subendocardial focal activity, reentrant excitation, or a combination of both mechanisms. Reentrant excitation was due to infringement of a focal activity on the spatial dispersion of repolarization, resulting in functional conduction block and circulating wave fronts. The polymorphic QRS configuration of VT in the LQTS was due to either changing the site of origin of focal activity, resulting in varying activation patterns, or varying orientations of circulating wave fronts.
In Medicare beneficiaries with HF, comorbid SA is most often not tested and consequently subjects are underdiagnosed and not treated. Meanwhile, in the few subjects in whom a diagnosis of SA is established and treatment is executed, survival improves significantly. These results support the importance of SA testing and treatment for patients newly diagnosed with HF.
After myocardial infarction (MI), the noninfarcted myocardium undergoes significant hypertrophy as part of the post-MI structural remodeling. Electrophysiological changes associated with the hypertrophied remodeled myocardium may play a key role in arrhythmia generation in the post-MI heart. We investigated the cellular and ionic basis of arrhythmias in remodeled left ventricular (LV) myocardium 3 to 4 weeks after MI in the rat. We analyzed (1) the incidence of induced ventricular tachyarrhythmias (VTs) in the in vivo heart, (2) action potential characteristics and arrhythmia mechanisms in multicellular preparations and isolated remodeled LV myocytes, and (3) the density and kinetics of the L-type Ca2+ current (ICa-L) and the fast and slow components of transient outward K+ currents (Ito-f and Ito-s, respectively). The results were compared with those from sham-operated rats. In vivo, programmed stimulation induced sustained VT in 80% of post-MI rats but not in sham-operated rats. The capacitance of post-MI hypertrophied myocytes was significantly increased compared with myocytes from sham-operated rats. Post-MI myocytes had prolonged action potential duration (APD) with marked heterogeneity of the time course of repolarization. The prolongation of APD could be explained by the significant decrease of the density of both Ito-f and Ito-s. There was no change in the kinetics of both currents compared with control. Both the density and kinetics of ICa-L were not significantly different in post-MI remodeled myocytes compared with control. The cellular studies showed that reentrant excitation secondary to dispersion of repolarization and triggered activity from both early and delayed afterdepolarizations are potential mechanisms for VT in the post-MI remodeled heart.
The study provides for the first time an EP mechanism for the characteristic periodic transition of the QRS axis during TdP VT in the LQTS.
Tachycardia-dependent QT/T alternans occurs in patients with the congenital or idiopathic form of long-QT syndrome (LQTS) and may presage the onset of polymorphic ventricular tachyarrhythmias. To examine the electrophysiological basis of arrhythmogenicity of QT/T alternans in LQTS, the tridimensional repolarization pattern of QT/T alternans was studied in the anthopleurin-A model of LQTS, a surrogate for LQT3. In 11 anesthetized mongrel puppies, tridimensional repolarization and activation patterns were analyzed from 256 to 384 unipolar electrograms. Cardiac repolarization was evaluated as the activation-recovery interval (ARI) of local electrograms. To induce QT/T alternans, the pacing cycle length (CL) was abruptly shortened in steps of 50 ms from a basic drive of 1000 ms. ARIs were calculated at epicardial (Epi), midmyocardial (Mid), and endocardial (End) sites. ARI restitution at each site was assessed by using a single premature stimulation delivered after the basic drive. ARI alternans occurred at longer CLs at Mid sites compared with End and Epi sites, and the magnitude of alternans at Mid sites was greater. Two factors contributed to the modulation of ARI during QT/T alternans: (1) differences in restitution kinetics at Mid sites, characterized by larger DeltaARI and a slower time constant (tau), and (2) differences in diastolic intervals resulting in different input to restitution at the same constant CL. These 2 factors could explain not only the onset of alternans at Mid sites at longer CLs but also the critical observation that ARI dispersion between Epi and Mid sites during alternans was greater than during the slower basic CL. Marked ARI alternans could be present in local electrograms without manifest alternation of the QT/T segment in the surface ECG. The latter was seen at critically short CLs associated with reversal of the gradient of ARI between Epi and Mid sites, with a consequent reversal of polarity of the intramyocardial QT wave in alternate cycles. The arrhythmogenicity of QT/T alternans was primarily due to the greater degree of spatial dispersion of repolarization during alternans than during slower rates not associated with alternans. This could result in functional conduction block and reentrant ventricular tachyarrhythmias during the fixed drive associated with alternans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.