We report DNA-scaffolded synergistic catalysis, a concept that combines the diverse reaction scope of synergistic catalysis with the ability of DNA to precisely preorganize abiotic groups and undergo stimuli-triggered conformational changes. As an initial demonstration of this concept, we focus on Cu-TEMPO-catalyzed aerobic alcohol oxidation, using DNA as a scaffold to hold a copper cocatalyst and an organic radical cocatalyst (TEMPO) in proximity. The DNA-scaffolded catalyst maintained a high turnover number upon dilution and exhibited 190-fold improvement in catalyst turnover number relative to the unscaffolded cocatalysts. By incorporating the cocatalysts into a DNA hairpin-containing scaffold, we demonstrate that the rate of the synergistic catalytic reaction can be controlled through a reversible DNA conformational change that alters the distance between the cocatalysts. This work demonstrates the compatibility of synergistic catalytic reactions with DNA scaffolding, opening future avenues in reaction discovery, sensing, responsive materials, and chemical biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.