SUMMARY We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing of synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with efficiencies >40% without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >105. This method was used to diversify a heterologous β-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS. However, it is unclear how p38 MAPK affects TDP-43 proteinopathy. Here, we demonstrate that inhibition of p38α MAPK reduces pathological TDP-43 phosphorylation, aggregation, cytoplasmic mislocalization, and neurotoxicity. We establish that p38α MAPK phosphorylates TDP-43 at pathological serine 409/410 (S409/S410) and serine 292 (S292), which reduces TDP-43 liquid-liquid phase separation (LLPS) but allows pathological TDP-43 aggregation. Moreover, we show that protein arginine methyltransferase 1 methylates TDP-43 at R293. Importantly, S292 phosphorylation reduces R293 methylation, and R293 methylation reduces S409/S410 phosphorylation. R293 methylation permits TDP-43 LLPS and reduces pathological TDP-43 aggregation. Thus, strategies to reduce p38α-mediated TDP-43 phosphorylation and promote R293 methylation could have therapeutic utility for ALS and related TDP-43 proteinopathies.
As neurons age, protein homeostasis becomes less efficient, resulting in misfolding and aggregation. Chaperone proteins perform vital functions in the maintenance of cellular proteostasis, and chaperone-based therapies that promote sequestration of toxic aggregates may prove useful in blocking the development of neurodegenerative disease. We previously demonstrated that proSAAS, a small secreted neuronal protein, exhibits potent chaperone activity against protein aggregation in vitro and blocks the cytotoxic effects of amyloid and synuclein oligomers in cell culture systems. We now examine whether cytoplasmic expression of proSAAS results in interactions with protein aggregates in this cellular compartment. We report that expression of proSAAS within the cytoplasm generates dense, membraneless 2 μm proSAAS spheres which progressively fuse to form larger spheres, suggesting liquid droplet-like properties. ProSAAS spheres selectively accumulate a C-terminally truncated fluorescently tagged form of TDP-43, initiating its cellular redistribution; these TDP-43-containing spheres also exhibit dynamic fusion. Efficient encapsulation of TDP-43 into proSAAS spheres is driven by its C-terminal prion-like domain; spheres must be formed for sequestration to occur. Three proSAAS sequences, a predicted coiled-coil, a conserved region (residues 158–169), and the positively charged sequence 181–185, are all required for proSAAS to form spheres able to encapsulate TDP-43 aggregates. Substitution of lysines for arginines in the 181–185 sequence results in nuclear translocation of proSAAS and encapsulation of nuclear-localized TDP-43216–414. As a functional output, we demonstrate that proSAAS expression results in cytoprotection against full-length TDP-43 toxicity in yeast. We conclude that proSAAS can act as a functional holdase for TDP-43 via this phase-separation property, representing a cytoprotectant whose unusual biochemical properties can potentially be exploited in the design of therapeutic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.