A deep water‐resource and stratigraphic test well near the center of Nantucket Island, about 40 miles (64 km) off the New England Coast, has encountered freshwater at greater depth than predicted by the Ghyben‐Herzberg principle. An uppermost lens of fresh‐water, which occupies relatively permeable glacial‐outwash sand and gravel to a depth of 520 ft. (158 m), is probably in hydrodynamic equilibrium with the present level of the sea and the height of the water table. However, two zones of freshwater between 730‐820 ft. (222‐250 m) and 900‐930 ft. (274‐283 m) are anomalously deep. A third zone extending from 1150‐1500 ft. (350‐457 m) contains slightly salty ground water (2 to 3 parts per thousand dissolved solids). Several explanations are possible, but the most likely is that large areas of the Continental Shelf were exposed to recharge by precipitation during long periods of low sea level in Pleistocene time. After the last retreat of glacial ice, seawater rapidly drowned the shelf around Nantucket Island. Since then, about 8000 years ago, the deep freshwater zones which underlie dense clay layers have not had time to adjust to a new equilibrium. Under similar circumstances freshwater may remain trapped under extensive areas of the Continental Shelf wherever clay confining beds have not permitted saltwater to intrude rapidly to new positions of hydrodynamic equilibrium. The implications are far reaching because all continental shelfs were exposed to similar hydrologic influences during Pleistocene time.
A pumping test was conducted along the Mullica River in the Wharton Tract, New Jersey as part of a water-resources investigation. Impermeable bog iron caps parts of the flood plain and channel so that ground-water recharge moves directly into the river.Observation wells on both sides of the river tapped water-bearing zones at 25 (shallow), 50 (medium), and 100 (deep) feet. A pumping well, screened in the medium zone, caused abrupt drawdowns which leveled off after a few minutes. Shape of the drawdown cone established early and changed little throughout the test. Piezometric surfaces were steepest on the southwest, indicating that most water came from there. Uninterrupted contour trends beneath the river show that here relatively little water entered the aquifer. Head differentials between the zones were greatest at the pumping well. Movement from the deep to medium zones was confined largely to the pumping-well vicinity. Pumping produced extensive reductions in the original areas of upward gradient between the medium and shallow zones; thus, areas of downward leakage became connected across the river. Piezometric head beneath the river was progressively lowered and caused the flood plain to dry; it became wet again when pumping stopped. The well field recovered to natural conditions in about 24 hours.Lack of hydraulic continuity between the river and aquifer results from bog iron deposits. Their removal will improve the continuity, and it appears feasible to induce river recharge to nearby pumping wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.