Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle’s physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structure–activity relationship between NANPs’ shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs’ uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs’ recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.
Recent insights into the immunostimulatory properties of nucleic acid nanoparticles (NANPs) have demonstrated that variations in the shape, size, and composition lead to distinct patterns in their immunostimulatory properties. While most of these studies have used a single lipid-based carrier to allow for NANPs’ intracellular delivery, it is now apparent that the platform for delivery, which has historically been a hurdle for therapeutic nucleic acids, is an additional means to tailoring NANP immunorecognition. Here, the use of dendrimers for the delivery of NANPs is compared to the lipid-based platform and the differences in resulting cytokine induction are presented.
Three-dimensional wireframe DNA origami have programmable structural and sequence features that render them potentially suitable for prophylactic and therapeutic applications. However, their innate immunological properties, which stem from parameters including geometric shape and cytosine-phosphate-guanine dinucleotide (CpG) content, remain largely unknown. Here, we investigate the immunostimulatory properties of 3D wireframe DNA origami on the TLR9 pathway using both reporter cell lines and primary immune cells. Our results suggest that bare 3D polyhedral wireframe DNA origami induce minimal TLR9 activation despite the presence of numerous internal CpG dinucleotides. However, when displaying multivalent CpG-containing ssDNA oligos, wireframe DNA origami induce robust TLR9 pathway activation, along with enhancement of downstream immune response as evidenced by increases in Type I and Type III interferon (IFN) production in peripheral blood mononuclear cells. Further, we find that CpG copy number and spatial organization each contribute to the magnitude of TLR9 signaling and that NANP-attached CpGs do not require phosphorothioate stabilization to elicit signaling. These results suggest key design parameters for wireframe DNA origami that can be programmed to modulate immune pathway activation controllably for prophylactic and therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.