Cytotoxic T lymphocyte–associated antigen-4 (CTLA-4) blockade can promote antitumor T cell immunity and clinical responses. The mechanism by which anti–CTLA-4 antibodies induces antitumor responses is controversial. To determine the effects of CTLA-4 blockade on the T cell repertoire, we used next-generation deep sequencing to measure the frequency of individual rearranged T cell receptor β (TCRβ) genes, thereby characterizing the diversity of rearrangements, known as T cell clonotypes. CTLA-4 blockade in patients with metastatic castration-resistant prostate cancer and metastatic melanoma resulted in both expansion and loss of T cell clonotypes, consistent with a global turnover of the T cell repertoire. Overall, this treatment increased TCR diversity as reflected in the number of unique TCR clonotypes. The repertoire of clonotypes continued to evolve over subsequent months of treatment. Whereas the number of clonotypes that increased with treatment was not associated with clinical outcome, improved overall survival was associated with maintenance of high-frequency clones at baseline. In contrast, the highest-frequency clonotypes fell with treatment in patients with short overall survival. Stably maintained clonotypes included T cells having high-avidity TCR such as virus-reactive T cells. Together, these results suggest that CTLA-4 blockade induces T cell repertoire evolution and diversification. Moreover, improved clinical outcomes are associated with less clonotype loss, consistent with the maintenance of high-frequency TCR clonotypes during treatment. These clones may represent the presence of preexisting high-avidity T cells that may be relevant in the antitumor response.
Type I IFNs induce gene expression through Stat1 and Stat2, which can in turn associate either to form Stat1 homodimers or the transcription factor ISGF-3. Stat1 homodimers also transduce signals for IFN-gamma. To explore the unique properties of Stat2 and ISGF-3 in type I IFN signaling, its gene was targeted for deletion. Stat2 null mice exhibit a number of defects in immune response. This includes an increased susceptibility to viral infection and the loss of a type I IFN autocrine/ paracrine loop, which in turn regulates several aspects of immune response. Intriguingly, Stat2-deficient fibroblasts exhibit a more significant defect in their response to type I IFNs than macrophages, highlighting tissue-specific differences in the response to this family of ligands.
As the field of cancer immunotherapy continues to advance at a fast pace, treatment approaches and drug development are evolving rapidly to maximize patient benefit. New agents are commonly evaluated for activity in patients who had previously received a programmed death receptor 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor as standard of care or in an investigational study. However, because of the kinetics and patterns of response to PD-1/PD-L1 blockade, and the lack of consistency in the clinical definitions of resistance to therapy, the design of clinical trials of new agents and interpretation of results remains an important challenge. To address this unmet need, the Society for Immunotherapy of Cancer convened a multistakeholder taskforce—consisting of experts in cancer immunotherapy from academia, industry, and government—to generate consensus clinical definitions for resistance to PD-(L)1 inhibitors in three distinct scenarios: primary resistance, secondary resistance, and progression after treatment discontinuation. The taskforce generated consensus on several key issues such as the timeframes that delineate each type of resistance, the necessity for confirmatory scans, and identified caveats for each specific resistance classification. The goal of this effort is to provide guidance for clinical trial design and to support analyses of emerging molecular and cellular data surrounding mechanisms of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.