To elucidate the mechanism of synovial damage in rheumatoid arthritis, we studied the activation of latent collagenases released from adherent rheumatoid synovial cells in culture. Latent enzyme was not complexed with alpha2 macroglobulin, the prinicpal proteinase inhibitor in serum, and could be activated by trypsin in the presence of alpha2 macroglobulin if sufficient proteinase was added to saturate inhibitor. Latent collagenase bound half as effectively to collagen fibrils as active enzyme. Plasmin was a threefold better activator of latent enzyme than trypsin and could be generated by addition of plasminogen to synovial-cell cultures. Production of both collagenase and plasminogen activator was inhibited by dexamethasone (10(-9) M). These studies emphasize in importance of control of activation in regulation collagenase activity, It is likely that rheumatoid synovium produces both latent collagenase and plasminogen activator; plasmin is activated from its zymogen, plasminogen, present in inflamed tissues, and in turn activates collagenase.
The transport and cellular metabolism of Cu depends on a series of membrane proteins and smaller soluble peptides that comprise a functionally integrated system for maintaining cellular Cu homeostasis. Inward transport across the plasma membrane appears to be a function of integral membrane proteins that form the channels that select Cu ions for passage. Two membrane-bound Cu-transporting ATPase enzymes, ATP7A and ATP7B, the products of the Menkes and Wilson disease genes, respectively, catalyze an ATP-dependent transfer of Cu to intracellular compartments or expel Cu from the cell. ATP7A and ATP7B work in concert with a series of smaller peptides, the copper chaperones, that exchange Cu at the ATPase sites or incorporate the Cu directly into the structure of Cu-dependent enzymes such as cytochrome c oxidase and Cu, Zn superoxide dismutase. These mechanisms come into play in response to a high influx of Cu or during the course of normal Cu metabolism.
Citrus limonoid glucosides, a family of fruit bioactive compounds, were postulated to have free radical-scavenging and apoptosis-inducing properties against certain types of cancers. Four highly purified limonoid glucosides, limoin 17beta D-glucopypranoside (LG), obacunone 17beta D-glucopyranoside (OG), nomilinic acid 17beta D-glucopyranoside (NAG), and deacetylnomilinic acid 17beta D-glucopyranoside (DNAG) were tested for superoxide radical (O(2)(-))-quenching activity and cytotoxic action against undifferentiated human SH-SY5Y neuroblastoma cells in culture. All 4 scavenged O(2)(-) as measured by inhibition of pyrogallol decomposition in a spectrophotometric assay. Quenching by NAG in particular emulated an equivalent concentration of vitamin C. When added to the medium of SH-SY5Y cells in culture, micromolar amounts of LG and OG, compared with untreated controls, caused a cessation of cell growth and rapid cell death (P < 0.001); NAG and DNAG were better tolerated, but nonetheless toxic as well. Cytotoxicity was related to a concentration- and time-dependent increase in caspase 3/7 activity, suggesting that limonoid glucosides were capable of inducing apoptosis. Arrested cell growth and the induction of apoptosis were confirmed by flow cytometry and DNA fragmentation analysis. Importantly, caspase induction at 12 h correlated with cell survival at 24 h (P = 0.046), suggesting that apoptosis was the primary cause of cell death. We conclude that citrus limonoid glucosides are toxic to SH-SY5Y cancer cells. Cytotoxicity is exerted through apoptosis by an as yet unknown mechanism of induction. Individual limonoid glucosides differ in efficacy as anticancer agents, and this difference may reside in structural variations in the A ring of the limonoid molecule.
Free radicals generated by a partial reduction of O2 pose a serious hazard to tissues and vital organs, especially membrane lipids, connective tissues, and the nucleic acids of cells. For protection, enzymes have evolved that specifically attack O2-, hydrogen, and organic peroxides, and repair any damage incurred to DNA. With few exceptions, antioxidant enzymes are found in all aerobic and aerotolerant anaerobic organisms. Logic assumes that a basal level of antioxidant enzyme activity is maintained at all times. This may be true. Yet cells must have ways to amplify antioxidant enzyme activity to counter sudden increases in oxygen metabolites. The full details of that regulation are slowly coming to light. Bacteria possess a series of elaborate and interacting genes that can sense specific increases in intracellular H2O2 and O2-. In higher organisms, hormones and metal ion cofactors impose pre- and posttranslational control over the genetic expression of antioxidant enzymes. Furthermore, aging, cellular differentiation, and organ specificity must also be factored into the final equation in higher organisms. This review will discuss some of the more recent findings relevant to antioxidant enzyme regulation in bacteria and higher organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.