Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings.
Activation of AT 1 (type 1 Ang) receptors stimulates cardiomyocyte hypertrophy in vitro. Accordingly, it has been suggested that regression of cardiac hypertrophy associated with renin-Ang system blockade is due to inhibition of cellular actions of Ang II in the heart, above and beyond their effects to reduce pressure overload. We generated 2 distinct mouse lines with cell-specific deletion of AT 1A receptors, from cardiomyocytes. In the first line (C-SMKO), elimination of AT 1A receptors was achieved using a heterologous Cre recombinase transgene under control of the Sm22 promoter, which expresses in cells of smooth muscle lineage including cardiomyocytes and vascular smooth muscle cells of conduit but not resistance vessels. The second line (R-SMKO) utilized a Cre transgene knocked-in to the Sm22 locus, which drives expression in cardiac myocytes and vascular smooth muscle cells in both conduit and resistance arteries. Thus, although both groups lack AT 1 receptors in the cardiomyocytes, they are distinguished by presence (C-SMKO) or absence (R-SMKO) of peripheral vascular responses to Ang II. Similar to wild-types, chronic Ang II infusion caused hypertension and cardiac hypertrophy in C-SMKO mice, whereas both hypertension and cardiac hypertrophy were reduced in R-SMKOs. Thus, despite the absence of AT 1A receptors in cardiomyocytes, C-SMKOs develop robust cardiac hypertrophy. By contrast, R-SMKOs developed identical levels of hypertrophy in response to pressure overload–induced by transverse aortic banding. Our findings suggest that direct activation of AT 1 receptors in cardiac myocytes has minimal influence on cardiac hypertrophy induced by renin-Ang system activation or pressure overload.
Angiotensin II (ANG II) is a major mediator of hypertension pathogenesis. In addition, there are well-documented differences in expression of the renin-angiotensin system (RAS) components and ANG II responses between males and females, which may explain sex differences in blood pressure (BP) and hypertension epidemiology. We previously showed that type 1A angiotensin (AT) receptors in vascular smooth muscle cells (VSMCs) play a critical role in BP regulation and hypertension pathogenesis, but these studies were carried out in male mice. Therefore, the major goal of the current studies was to examine the impact of VSMC AT receptors on BP and hypertension pathogenesis in female mice. We found that elimination of VSMC AT receptors in female mice reduced (≈8 mmHg) baseline BP without altering sodium sensitivity. The severity of ANG II-induced hypertension was diminished (≈33% reduction in BP), particularly during the last 2 wk of chronic ANG II infusion, compared with controls, but natriuresis was not altered during the first 5 days of ANG II infusion. Urinary norepinephrine levels were enhanced in female SMKO compared with control mice. There was a virtually complete elimination of ANG II-induced kidney hemodynamic responses with attenuation of acute vasoconstrictor responses in the systemic vasculature. These findings demonstrate that direct vascular actions of AT receptors play a prominent role in BP control and hypertension pathogenesis in female mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.