Summary Vesicle transport requires four steps; vesicle formation, movement, tethering and fusion. In yeast, two Rab GTPases, Ypt31/32 are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4, and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2, and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors, and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation, and remain attached until fusion.
The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stagedependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.immunometabolism | innate immunity | immune evasion |
Dissimilatory sulfite reductases (dSiRs) are crucial enzymes in bacterial sulfur-based energy metabolism, which are likely to have been present in some of the earliest life forms on Earth. Several classes of dSiRs have been proposed on the basis of different biochemical and spectroscopic properties, but it is not clear whether this corresponds to actual physiological or structural differences. Here, we describe the first structure of a dSiR from the desulforubidin class isolated from Desulfomicrobium norvegicum . The desulforubidin (Drub) structure is assembled as α 2 β 2 γ 2 , in which two DsrC proteins are bound to the core [DsrA] 2 [DsrB] 2 unit, as reported for the desulfoviridin (Dvir) structure from Desulfovibrio vulgaris . Unlike Dvir, four sirohemes and eight [4Fe–4S] clusters are present in Drub. However, the structure indicates that only two of the Drub coupled siroheme-[4Fe–4S] cofactors are catalytically active. Mass spectrometry studies of purified Drub and Dvir show that both proteins present different oligomeric complex forms that bind two, one, or no DsrC proteins, providing an explanation for conflicting spectroscopic and biochemical results in the literature, and further indicating that DsrC is not a subunit of dSiR, but rather a protein with which it interacts.
Background: Rab14 regulates endosomal trafficking; however, its binding to Rab11-FIP effectors is a source of conflicting data. Results: Rab14 interacts with the canonical Rab-binding domain of RCP, and both Rab14 and RCP function in neuritogenesis. Conclusion: Rab11-RCP complex formation may precede recruitment of RCP by Rab14. Significance: This study provides a conceptual framework for Rab14 and RCP in health and disease.
The small GTPase Rab6 regulates vesicle trafficking at the level of Golgi. Recently, the crystal structures of Rab6 in complexes with two unrelated effectors have been determined. The structure of Rab6a-GTP in complex with a 378-residue internal fragment of the effector Rab6IP1 (Rab6-interacting protein 1) has been solved. In addition, the structure of Rab6 with the golgin, GCC185, has also been determined. In both complexes, two alpha-helices from the effector mediate binding to switch I, switch II and the interswitch region of Rab6. Comparisons of the complexes reveal significant conformational changes in the conserved hydrophobic triad of Rab6. Thus conformational flexibility in the triad mediates recognition of compositionally distinct alpha-helical coiled coils, providing a rationale for the promiscuity of Rab6 in effector recruitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.