The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of Class I and II HDACs as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as non-selective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of a first non-selective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
The development of class- and isoform-selective histone deacetylase (HDAC) inhibitors is highly desirable for the study of the complex interactions of these proteins central to transcription regulation as well as for the development of selective HDAC inhibitors as drugs in epigenetics. To provide a structural basis for the rational design of such inhibitors, a combined computational and experimental study of inhibition of three different histone deacetylase isoforms, HDAC1, -6, and -8, with three different hydroxamate inhibitors is reported. While SAHA was found to be unselective for the inhibition of class I and class II HDACs, the other inhibitors were found to be selective toward class II HDACs. Molecular dynamics simulations indicate that this selectivity is caused by both the overall shape of the protein surface leading to the active site and specific interactions of an aspartate residue in a polar loop and two phenylalanines and a methionine in a nonpolar loop. Monitoring the specific interactions as a function of the simulation time identifies a key sulfur-pi interaction. The implications of the structural motifs for the design of class II-selective HDAC inhibitors are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.