Insulin-like growth factor I (IGF-I) has been implicated in the regulation and maintenance of skeletal muscle protein balance and thus may be of potential benefit in attenuating the cancer-cachectic process. To examine this hypothesis, 47 sham or tumor-implanted Fischer 344 rats were randomized to receive either continuous subcutaneous IGF-I (220 or 400 micrograms/day) or saline as control. In the tumor-bearing (TB) population, IGF-I-treated groups showed a dose-dependent increase in host weight gain (P less than 0.05), final carcass weight (P less than 0.05), and gastrocnemius muscle weights (P less than 0.05) and protein contents (0.50 +/- 0.02, 0.40 +/- 0.01, and 0.52 +/- 0.03 g/100 g host wt, for non-TB saline, TB saline, and TB 400 mg IGF-I groups, respectively; P less than 0.01, IGF-I vs. saline). Similar increases in muscle RNA and DNA contents (P less than 0.01) were induced by IGF-I treatment (P less than 0.05). IGF-I treatment in this rat sarcoma model significantly reduced the proportion of aneuploid cells in the tumor (aneuploid-to-diploid ratio: TB saline 1.1 +/- 0.2 vs. TB IGF-I 0.5 +/- 0.1; P less than 0.05). IGF-I treatment attenuated host muscle protein and lean tissue depletion without stimulation of tumor growth. The tumor aneuploid population was reduced in response to IGF-I treatment. Thus IGF-I may be a potential therapeutic agent in cancer-induced cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.