We investigated the effectiveness of 15 min exposures to 600 and 1000 degrees C in continuous flow normal and starved-air incineration-like conditions to inactivate samples of pooled brain macerates from hamsters infected with the 263K strain of hamster-adapted scrapie with an infectivity titer in excess of 10(9) mean lethal doses (LD50) per g. Bioassays of the ash, outflow tubing residues, and vented emissions from heating 1 g of tissue samples yielded a total of two transmissions among 21 inoculated animals from the ash of a single specimen burned in normal air at 600 degrees C. No other ash, residue, or emission from samples heated at either 600 or 1000 degrees C, under either normal or starved-air conditions, transmitted disease. We conclude that at temperatures approaching 1000 degrees C under the air conditions and combustion times used in these experiments, contaminated tissues can be completely inactivated, with no release of infectivity into the environment from emissions. The extent to which this result can be realized in actual incinerators and other combustion devices will depend on equipment design and operating conditions during the heating process.
One-gram samples from a pool of crude brain tissue from hamsters infected with the 263K strain of hamster-adapted scrapie agent were placed in covered quartz-glass crucibles and exposed for either 5 or 15 min to dry heat at temperatures ranging from 150°C to 1,000°C. Residual infectivity in the treated samples was assayed by the intracerebral inoculation of dilution series into healthy weanling hamsters, which were observed for 10 months; disease transmissions were verified by Western blot testing for proteinaseresistant protein in brains from clinically positive hamsters. Unheated control tissue contained 9.9 log 10LD50͞g tissue; after exposure to 150°C, titers equaled or exceeded 6 log 10LD50͞g, and after exposure to 300°C, titers equaled or exceeded 4 log10LD50͞g. Exposure to 600°C completely ashed the brain samples, which, when reconstituted with saline to their original weights, transmitted disease to 5 of 35 inoculated hamsters. No transmissions occurred after exposure to 1,000°C. These results suggest that an inorganic molecular template with a decomposition point near 600°C is capable of nucleating the biological replication of the scrapie agent. transmissible spongiform encephalopathy ͉ scrapie ͉ prion ͉ medical waste ͉ incineration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.