The internal moisture dynamics of an aged (> 100 years old) railway earthwork embankment, which is still in use, are investigated using 2D and 3D resistivity monitoring. A methodology was employed that included automated 3D ERT data capture and telemetric transfer with on-site power generation, the correction of resistivity models for seasonal temperature changes and the translation of subsurface resistivity distributions into moisture content based on petrophysical relationships developed for the embankment material. Visualization of the data as 2D sections, 3D tomograms and time series plots for different zones of the embankment enabled the development of seasonal wetting fronts within the embankment to be monitored at a high-spatial resolution and the respective distributions of moisture in the flanks, crest and toes of the embankment to be assessed. Although the embankment considered here is at no immediate risk of failure, the approach developed for this study is equally applicable to other more high-risk earthworks and natural slopes.Geophysical ground imaging techniques offer the potential to complement existing approaches by spatially characterizing and monitoring the internal conditions of earthworks to provide highresolution information of subsurface property changes and hence precursors to slope failure. Resistivity imaging, or electrical resistivity tomography (ERT), holds particular promise due to its sensitivity to both lithological variations (e.g., Shevnin et al. 2007) and changes in soil moisture, which can be imaged by applying appropriate petrophysical relationships linking resistivity and saturation (e.g., Cassiani et al. 2009;Brunet et al. 2010). Twodimensional ERT is now a well-established technique for investigating natural slopes with numerous recent examples of the use of the technique for structural characterization and hydrogeological investigations (e.g
Acoustic emission (AE) has become an established approach to monitor the stability of soil slopes. However, the challenge has been to develop strategies to interpret and quantify deformation behaviour from the measured AE. This paper presents the first comparison of continuous AE (measured using an active waveguide) and continuous subsurface deformation measurements. The active waveguide is installed in a borehole through a slope and comprises a metal waveguide rod or tube with a granular backfill surround. When the host slope deforms, the column of granular backfill also deforms, generating AE that can propagate along the waveguide. This paper presents results from a field trial at a reactivated soil slope in North Yorkshire, UK. The measurements confirm that AE rates generated are directly proportional to the velocity of slope movement (e.g. the AE rate versus velocity relationship determined for a series of slope movement events produced an R 2 value of 0?8) and demonstrate the performance of AE monitoring of active waveguides to provide continuous information on slope displacements and displacement rates with high temporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.