In the era of internet, several online platforms offer many items to users. Users could spend a lot of time to find (or not) some items they are interested, sometimes, they will probably not find the desired items. An effective strategy to overcome this problem is a recommender system, one of the most popular applications of machine learning. Recommender systems select most appropriate items to an specific user based on previous information between items and users, and they are developed using diffeent approaches. One of the most successful approach for developing recommender systems is collaborative filtering, which can filter out items that a user might like based on reactions of users with similar profiles. Often, traditional recommender systems only consider precision as evaluation metric of performance, however, others metrics (like recall, diversity, novelty, etc) are also important. Unfortunately, some metrics are conflicting, e.g., precision impacts negatively on other metrics. This paper presents a multi-objective evolutionary programming method for developing a recommender system, which is based on a new collaborative filtering technique, while maximizes the recall for a given precision, The new collaborative filtering technique uses three components for recommending an item to a user: 1) clustering of users; 2) a previous memory-based prediction; and 3) five decimal parameters (threshold average clustering, threshold penalty, threshold incentive, weight attached to average clustering and weight attached to Pearson correlation). The multiobjective evolutionary programming optimizes the clustering of users and the five decimal parameters, while, it searches maximizes both similarity precision and recall objectives. A comparison between the proposed method and a previous nonevolutionary method shows that the proposed method improves precision and recall metric on a benchmark database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.