High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only few observational constraints exist on the architecture and disk structure of high-mass protobinaries and their accretion properties. Here we report the discovery of a close (57.9 ± 0.2mas=170au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with ∼ 3 milliarcsecond resolution. We estimate the component masses to ∼ 20 and ∼ 18M ⊙ and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing towards a young dynamical age of the system. We constrain the distribution of the Brγ and COemitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows L ′ -band emission on 3 − 4× larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is ∼ 3× more massive and ∼ 5× more compact than other high-mass multiplies imaged at infrared wavelengths and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star-disk interactions and the role of multiplicity in high-mass star formation.
A crucial diagnostic that can tell us about processes involved in the formation and dynamical evolution of planetary systems is the angle between the rotation axis of a star and a planet's orbital angular momentum vector (“spin–orbit” alignment or “obliquity”). Here we present the first spin–orbit alignment measurement for a wide-separation exoplanetary system, namely on the directly imaged planet β Pictoris b. We use VLTI/GRAVITY spectro-interferometry with an astrometric accuracy of 1 μas (microarcsecond) in the Brγ photospheric absorption line to measure the photocenter displacement associated with the stellar rotation. Taking inclination constraints from astroseismology into account, we constrain the three-dimensional orientation of the stellar spin axis and find that β Pic b orbits its host star on a prograde orbit. The angular momentum vectors of the stellar photosphere, the planet, and the outer debris disk are well aligned with mutual inclinations ≤3° ± 5°, which indicates that β Pic b formed in a system without significant primordial misalignments. Our results demonstrate the potential of infrared interferometry to measure the spin–orbit alignment for wide-separation planetary systems, probing a highly complementary regime to the parameter space accessible with the Rossiter–McLaughlin effect. If the low obliquity is confirmed by measurements on a larger sample of wide-separation planets, it would lend support to theories that explain the obliquity in Hot Jupiter systems with dynamical scattering and the Kozai–Lidov mechanism.
Aims. Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods. We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results. The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of ∼99.6 ± 4.8 • . The near-infrared continuum emission is ∼3.6× more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue-and red-shifted emissions are displaced along a position angle of 24 • ± 3 • and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be improved by adding an outflowing component to the velocity field, as inspired by a magneto-centrifugal disk-wind scenario.Conclusions. This study combines spectroscopy, spectroastrometry, and high-spectral dispersion interferometric, providing yet the tightest constraints on the distribution and kinematics of Brγ-emitting gas in the inner few AU around a young star. All observables can be modeled assuming a disk wind scenario. Our simulations show that adding a poloidal velocity component causes the perceived system axis to shift, offering a powerful new diagnostic for detecting non-Keplerian velocity components in other systems.
Context. The disks around some Herbig Be stars have been observed to be more compact than the expected dust sublimation radius for such objects, with highly refractory dust grains and optically thick gas emission having been proposed as possible explanations for this phenomenon. Aims. Previously, the "undersized" Herbig Be star MWC 147 was observed with interferometry, with the results indicating the presence of a compact gaseous disk based on the measured wavelength-dependence of near-infrared/mid-infrared visibilities. Our aim is to search for direct evidence for the presence of hot gas inside of the expected dust sublimation radius of MWC 147. Methods. By combining VLTI/AMBER spectro-interferometry (R = 12 000) with CRIRES spectroscopy (R = 100 000) we can both spectrally and spatially resolve the Brγ line-emitting gas around MWC 147. Additionally, using CHARA/CLIMB enables us to achieve baseline lengths up to 330m, offering ∼2 times higher angular resolution (and a better position angle coverage) than has previously been achieved with interferometry for MWC 147. To model the continuum we fit our AMBER and CLIMB measurements with a geometric model of an inclined Gaussian distribution as well as a ring model. We fit our high resolution spectra and spectrointerferometric data with a kinematic model of a disk in Keplerian rotation. Results. Our interferometric visibility modelling of MWC 147 indicates the presence of a compact continuum disk with a close to face-on orientation. We model the continuum with an inclined Gaussian, as well as a ring with a radius of 0.60 mas (0.39 au) which is well within the expected dust sublimation radius of 1.52 au. We detect no significant change in the measured visibilities across the Brγ line, indicating that the line-emitting gas is located in the same region as the continuum-emitting disk. Using our differential phase data we construct photocentre displacement vectors across the Brγ line, revealing a velocity profile consistent with a rotating disk. We fit our AMBER spectro-interferometry data with a kinematic model of a disk in Keplerian rotation, with both the line-emitting and continuum-emitting components of the disk originating from the same compact region close to the central star. The presence of line-emitting gas in the same region as the K-band continuum supports the interpretation that the K-band continuum traces an optically-thick gas disk. Conclusions. Our spatially and spectrally resolved observations of MWC 147 reveal that the K-band continuum and Brγ emission both originate from a similar region which is 3.9 times more compact than the expected dust sublimation radius for the star, with Brγ emitted from the accretion disk or disk wind region and exhibiting a rotational velocity profile. We conclude that we detect the presence of a compact, gaseous accretion disk in Keplerian rotation around MWC 147
Context. V1247 Orionis harbours a pre-transitional disc with a partially cleared gap. Earlier interferometric and polarimetric observations revealed strong asymmetries both in the gap region and in the outer disc. The presence of a companion was inferred to explain these asymmetric structures and the ongoing disc clearing. Aims. Using an extensive set of multi-wavelength and multi-epoch observations we aimed to identify the origin of the previously detected asymmetries. Methods. We have observed V1247 Ori at three epochs spanning ∼ 678 days using sparse aperture masking interferometry with Keck/NIRC2 and VLT/NACO. In addition, we search for signs of accretion through VLT/SPHERE-ZIMPOL spectral differential imaging in Hα and R-band continuum. Our SMA sub-millimetre interferometry in 880 µm continuum and in the CO(3-2) line allows us to constrain the orientation and direction of rotation of the outer disc. Results. We find the L'-band emission to be dominated by static features which trace forward-scattered dust emission from the inner edge of the outer disc located to the north-east. In H-and K-band, we see evidence for a companion candidate that moved systematically by 45 • within the first ∼345 days. The separation of the companion candidate is not well constrained, but the observed position angle change is consistent with Keplerian motion of a body located on a 6 au orbit. From the SMA CO moment map, the location of the disc rim, and the detected orbital motion, we deduced the three-dimensional orientation of the disc. We see no indication of accretion in Hα and set upper limits for an accreting companion. Conclusions. The measured contrast of the companion candidate in H and K is consistent with an actively accreting protoplanet. Hence, we identify V1247 Ori as a unique laboratory for studying companion-disc interactions and disc clearing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.