The growth of new imaging technologies has created a need for techniques that can be used for copyright protection of digital images. Copyright protection involves the authentication of image content and/or ownership and can be used to identify illegal copies of a (possibly forged) image. One approach for copyright protection is to introduce an invisible signal known as a digital watermark in the image.In this paper, we describe digital image watermarking techniques, known as perceptually based watermarks, that are designed to exploit aspects of the human visual system. In the most general sense, any watermarking technique that attempts to incorporate an invisible mark into an image is perceptually based. However, in order to provide transparency (invisibility of the watermark) and robustness to attack, more sophisticated use of perceptual information in the watermarking process is required. Several techniques have been introduced that incorporate a simple visual model in the marking procedure. Such techniques usually take advantage of frequency selectivity and weighing to provide some perceptual criteria in the watermarking process. Even more elaborate visual models are used to develop schemes that not only take advantage of frequency characteristics but also adapt to the local image characteristics, providing extremely robust as well as transparent schemes. We present examples from each category -from the simple schemes that guarantee transparency to the more elaborate schemes that use visual models to provide robustness as well as transparency.3
Background: Information on dietary intake provides some of the most valuable insights for mounting intervention programmes for the prevention of chronic diseases. With the growing concern about adolescent overweight, the need to accurately measure diet becomes imperative. Assessment among adolescents is problematic as this group has irregular eating patterns and they have less enthusiasm for recording food intake. Subjects/Methods: We used qualitative and quantitative techniques among adolescents to assess their preferences for dietary assessment methods. Results: Dietary assessment methods using technology, for example, a personal digital assistant (PDA) or a disposable camera, were preferred over the pen and paper food record. Conclusions: There was a strong preference for using methods that incorporate technology such as capturing images of food. This suggests that for adolescents, dietary methods that incorporate technology may improve cooperation and accuracy. Current computing technology includes higher resolution images, improved memory capacity and faster processors that allow small mobile devices to process information not previously possible. Our goal is to develop, implement and evaluate a mobile device (for example, PDA, mobile phone) food record that will translate to an accurate account of daily food and nutrient intake among adolescents. This mobile computing device will include digital images, a nutrient database and image analysis for identification and quantification of food consumption. Mobile computing devices provide a unique vehicle for collecting dietary information that reduces the burden on record keepers. Images of food can be marked with a variety of input methods that link the item for image processing and analysis to estimate the amount of food. Images before and after the foods are eaten can estimate the amount of food consumed. The initial stages and potential of this project will be described.
BackgroundEarly adulthood represents the transition to independent living which is a period when changes in diet and body weight are likely to occur. This presents an ideal time for health interventions to reduce the effect of health problems and risk factors for chronic disease in later life. As young adults are high users of mobile devices, interventions that use this technology may improve engagement. The Connecting Health and Technology study aimed to evaluate the effectiveness of tailored dietary feedback and weekly text messaging to improve dietary intake of fruit, vegetables and junk food over 6 months among a population-based sample of men and women (aged 18–30 years).MethodsA three-arm, parallel, randomized control trial was conducted. After baseline assessments, participants were randomized to one of three groups: A) dietary feedback and weekly text messages, B) dietary feedback only or C) control group. Dietary intake was assessed using a mobile food record App (mFR) where participants captured images of foods and beverages consumed over 4-days at baseline and post-intervention. The primary outcomes were changes in serves of fruits, vegetables, energy-dense nutrient-poor (EDNP) foods and sugar-sweetened beverages (SSB). The intervention effects were assessed using linear mixed effect models for change in food group serves.ResultsYoung adults (n = 247) were randomized to group A (n = 82), group B (n = 83), or group C (n = 82). Overall, no changes in food group serves for either intervention groups were observed. An unanticipated outcome was a mean weight reduction of 1.7 kg (P = .02) among the dietary feedback only. Men who received dietary feedback only, significantly reduced their serves of EDNP foods by a mean of 1.4 serves/day (P = .02). Women who received dietary feedback only significantly reduced their intake of SSB (P = .04) by an average of 0.2 serves/day compared with controls.ConclusionsTailored dietary feedback only resulted in a decrease in EDNP foods in men and SSB in women, together with a reduction in body weight. Using a mobile food record for dietary assessment and tailored feedback has great potential for future health promotion interventions targeting diet and weight in young adults.Trial RegistrationAustralian Clinical Trials Registry Registration number: ACTRN12612000250831.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.