Growth hormone excess can cause postprandial carbohydrate intolerance. To determine the contribution of splanchnic and extrasplanchnic tissues to this process, subjects were fed an isotopically labeled mixed meal after either a 12-h infusion of saline or growth hormone (4 micrograms.kg-1.h-1 [corrected]). Growth hormone infusion resulted in higher glucose and insulin concentrations both before and after meal ingestion. Despite growth hormone-induced hyperglycemia and hyperinsulinemia, postprandial hepatic glucose release and carbon dioxide incorporation into glucose (a qualitative estimate of gluconeogenesis) were similar to those present during saline, suggesting altered hepatic regulation. This was confirmed when glucose was infused in the absence of growth hormone to achieve glucose (and insulin) concentrations comparable to those present during growth hormone infusion. Although growth hormone excess did not alter splanchnic uptake of ingested glucose, it resulted in a fivefold increase in postprandial hepatic glucose release (578 +/- 31 vs. 117 +/- 10 mg.kg-16 h-1, P less than 0.01), less suppression of carbon dioxide incorporation into glucose (-13 +/- 9 vs. -53 +/- 12 mg.kg-1. 6-h-1, P less than 0.01), and lower glucose uptake (1,130 +/- 59 vs. 1,850 +/- 150 mg.kg-1.6 h-1, P less than 0.01). The decrease in postprandial glucose uptake did not appear to be mediated by a change in substrate uptake since postprandial plasma concentrations and forearm balance of lactate, free fatty acids, and ketone bodies did not differ in the presence and absence of growth hormone excess.(ABSTRACT TRUNCATED AT 250 WORDS)
Insulin-stimulated glucose oxidation is decreased in patients with non-insulin-dependent diabetes mellitus (NIDDM). It is not known whether this decrease is due to a primary defect in the oxidative pathway or is secondary to impaired glucose transport and/or phosphorylation. To address this issue, glucose oxidation was measured under steady-state conditions at low (approximately 270 pmol) and high (approximately 17 mumol) insulin concentrations in seven patients with NIDDM and seven healthy nondiabetic subjects matched for sex, age, and obesity. Glucose oxidation was measured simultaneously by indirect calorimetry and the isotopedilution technique. Although glucose oxidation and nonoxidative storage were lower (P less than 0.05) in diabetic than nondiabetic subjects during the low- and high-dose insulin infusions, oxidation of intracellularly derived glucose, estimated by subtracting the rate of oxidation measured isotopically (i.e., glucose oxidation derived from the extracellular space) from that measured by indirect calorimetry (i.e., total glucose oxidation), did not differ in diabetic and nondiabetic subjects during the low-dose insulin infusion (3.3 +/- 0.1 vs. 3.0 +/- 0.1 mumol.kg-1.min-1). Both techniques provided identical estimates of glucose oxidation during the high-dose insulin infusion. Impaired oxidation of extracellularly but not intracellularly derived glucose strongly suggests that the cause of decreased glucose oxidation in patients with NIDDM is secondary to impaired glucose transport and/or phosphorylation rather than a primary abnormality in the oxidative pathway.
We sought to determine whether treatment of hypoglycemia with a snack containing both protein and carbohydrate results in more prolonged protection against subsequent hypoglycemia than ingestion of carbohydrate alone. We studied six insulin-dependent diabetic subjects on two occasions. On both occasions subjects received a variable overnight insulin infusion to achieve euglycemia followed by a constant insulin infusion (approximately 0.5 mU x kg(-1) x min(-1)) designed to produce hypoglycemia. When glucose reached 50 mg/dL, subjects were fed a snack consisting of either bread (approximately 85 kcal) or bread plus meat (approximately 205 kcal). Both contained 15 g of carbohydrate. The insulin infusion was continued for the next 3 h or until glucose again fell to 50 mg/dL. Although bread plus meat resulted in a more marked rise (P < 0.05) in glucagon than did bread alone, neither the post treatment peak glucose concentration (73 +/- 4 vs. 70 +/- 6 mg/dL) nor the subsequent rate of fall of glucose (0.42 +/- 0.10 us. -0.35 +/- 0.07 mg/dL/min) differed. The present study shows that the rate of redevelopment of hypoglycemia does not differ after eating bread or bread plus meat. Therefore treatment of hypoglycemia with a protein-enriched snack merely adds calories rather prolonged protection against subsequent hypoglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.