Today's one-pass analytics applications tend to be data-intensive in nature and require the ability to process high volumes of data efficiently. MapReduce is a popular programming model for processing large datasets using a cluster of machines. However, the traditional MapReduce model is not well-suited for one-pass analytics, since it is geared towards batch processing and requires the data set to be fully loaded into the cluster before running analytical queries. This paper examines, from a systems standpoint, what architectural design changes are necessary to bring the benefits of the MapReduce model to incremental one-pass analytics. Our empirical and theoretical analyses of Hadoop-based MapReduce systems show that the widely-used sort-merge implementation for partitioning and parallel processing poses a fundamental barrier to incremental one-pass analytics, despite various optimizations. To address these limitations, we propose a new data analysis platform that employs hash techniques to enable fast in-memory processing, and a new frequent key based technique to extend such processing to workloads that require a large key-state space. Evaluation of our Hadoop-based prototype using real-world workloads shows that our new platform significantly improves the progress of map tasks, allows the reduce progress to keep up with the map progress, with up to 3 orders of magnitude reduction of internal data spills, and enables results to be returned continuously during the job.
Today’s one-pass analytics applications tend to be data-intensive in nature and require the ability to process high volumes of data efficiently. MapReduce is a popular programming model for processing large datasets using a cluster of machines. However, the traditional MapReduce model is not well-suited for one-pass analytics, since it is geared towards batch processing and requires the dataset to be fully loaded into the cluster before running analytical queries. This article examines, from a systems standpoint, what architectural design changes are necessary to bring the benefits of the MapReduce model to incremental one-pass analytics. Our empirical and theoretical analyses of Hadoop-based MapReduce systems show that the widely used sort-merge implementation for partitioning and parallel processing poses a fundamental barrier to incremental one-pass analytics, despite various optimizations. To address these limitations, we propose a new data analysis platform that employs hash techniques to enable fast in-memory processing, and a new frequent key based technique to extend such processing to workloads that require a large key-state space. Evaluation of our Hadoop-based prototype using real-world workloads shows that our new platform significantly improves the progress of map tasks, allows the reduce progress to keep up with the map progress, with up to 3 orders of magnitude reduction of internal data spills, and enables results to be returned continuously during the job.
This article provides a definition of what “good financial management” means in the respective local, state, and federal arenas and highlights some successful efforts of financial management improvement. Furthermore, eight evaluative criteria for assessing financial management performance developments are suggested and illustrated through current federal examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.