The inactivation of glycogen synthase kinase (GSK)3 has been proposed to play important roles in insulin and Wnt signalling. To define the role that inactivation of GSK3 plays, we generated homozygous knockin mice in which the protein kinase B phosphorylation sites on GSK3a (Ser21) and GSK3b (Ser9) were changed to Ala. The knockin mice were viable and were not diabetic. Using these mice we show that inactivation of GSK3b rather than GSK3a is the major route by which insulin activates muscle glycogen synthase. In contrast, we demonstrate that the activation of muscle glycogen synthase by contraction, the stimulation of muscle glucose uptake by insulin, or the activation of hepatic glycogen synthase by glucose do not require GSK3 phosphorylation on Ser21/ Ser9. GSK3 also becomes inhibited in the Wnt-signalling pathway, by a poorly defined mechanism. In GSK3a/ GSK3b homozygous knockin cells, Wnt3a induces normal inactivation of GSK3, as judged by the stabilisation of b-catenin and stimulation of Wnt-dependent transcription. These results establish the function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated.
Collapsin response mediator proteins (CRMPs) are a family of neuron-enriched proteins that regulate neurite outgrowth and growth cone dynamics. Here, we show that Cdk5 phosphorylates CRMP1, CRMP2, and CRMP4, priming for subsequent phosphorylation by GSK3 in vitro. In contrast, DYRK2 phosphorylates and primes CRMP4 only. The Cdk5 and DYRK2 inhibitor purvalanol decreases the phosphorylation of CRMP proteins in neurons, whereas CRMP1 and CRMP2, but not CRMP4, phosphorylation is decreased in Cdk5 ؊/؊ cortices. Stimulation of neuroblastoma cells with IGF1 or TPA decreases GSK3 activity concomitantly with CRMP2 and CRMP4 phosphorylation. Conversely, increased GSK3 activity is not sufficient to increase CRMP phosphorylation. However, the growth cone collapse-inducing protein Sema3A increases Cdk5 activity and promotes phosphorylation of CRMP2 (but not CRMP4). Therefore, inhibition of GSK3 alters phosphorylation of all CRMP isoforms; however, individual isoforms can be differentially regulated by their respective priming kinase. This is the first GSK3 substrate found to be regulated in this manner and may explain the hyperphosphorylation of CRMP2 observed in Alzheimer's disease.Glycogen synthase kinase 3 (GSK3) 4 is an evolutionarily conserved and ubiquitously expressed Ser/Thr kinase that is expressed as two closely related isoforms in mammals, GSK3␣ (51 kDa) and GSK3 (47 kDa) (1). GSK3 is unusual when compared with other protein kinases as it is constitutively active in cells and phosphorylation of most substrates must be preceded by phosphorylation of a nearby residue by another kinase. This process is known as priming and occurs at Ser/Thr residues located 4 or 5 residues C-terminal to the site phosphorylated by GSK3 (2, 3). GSK3 activity is inhibited by phosphorylation of an N-terminal serine residue (Ser 21 on GSK3␣ and Ser 9 on GSK3), which is catalyzed by members of the AGC family of protein kinases upon stimulation by growth factors (4, 5). Alternatively, GSK3 activity may be inhibited by protein-protein interactions following activation of the Wnt signaling pathway (6, 7). It is also possible that regulation of priming kinases could indirectly regulate phosphorylation of substrates by GSK3, although this has yet to be proven.We have recently discovered new brain-specific substrates for GSK3, namely collapsin response mediator protein (CRMP) 2 and 4 (3). These isoforms are members of a family of five CRMP proteins (CRMP1-5) that are expressed almost ubiquitously throughout the central nervous system (8, 9). CRMP2 is the best studied isoform of the family. Mammalian CRMP2 binds to tubulin heterodimers to promote microtubule formation and co-localizes with microtubules inside cells (10). Overexpression of CRMP2 in hippocampal neurons promotes increased axon elongation (3, 10, 11). However, mutation of the GSK3 phosphorylation sites on CRMP2 to non-phosphorylatable alanine residues alters CRMP2-induced axon elongation (3, 12). Other functions attributed to CRMP2 include regulation of cell surface receptor intern...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.