The receptive field, defined as the spatiotemporal selectivity of neurons to sensory stimuli, is central to our understanding of the neuronal mechanisms of perception. However, despite the fact that eye movements are critical during normal vision, the influence of eye movements on the structure of receptive fields has never been characterized. Here, we map the receptive fields of macaque area V4 neurons during saccadic eye movements and find that receptive fields are remarkably dynamic. Specifically, before the initiation of a saccadic eye movement, receptive fields shrink and shift towards the saccade target. These spatiotemporal dynamics may enhance information processing of relevant stimuli during the scanning of a visual scene, thereby assisting the selection of saccade targets and accelerating the analysis of the visual scene during free viewing.
Electrical microstimulation has been used to elucidate cortical function. This review discusses neuronal excitability and effective current spread estimated by using three different methods: 1) single-cell recording, 2) behavioral methods, and 3) functional magnetic resonance imaging (fMRI). The excitability properties of the stimulated elements in neocortex obtained using these methods were found to be comparable. These properties suggested that microstimulation activates the most excitable elements in cortex, that is, by and large the fibers of the pyramidal cells. Effective current spread within neocortex was found to be greater when measured with fMRI compared with measures based on single-cell recording or behavioral methods. The spread of activity based on behavioral methods is in close agreement with the spread based on the direct activation of neurons (as opposed to those activated synaptically). We argue that the greater activation with imaging is attributed to transynaptic spread, which includes sub threshold activation of sites connected to the site of stimulation. The definition of effective current spread therefore depends on the neural event being measured
Over the last two centuries, electrical microstimulation has been used to demonstrate causal links between neural activity and specific behaviors and cognitive functions. However, to establish these links it is imperative to characterize the cortical activity patterns that are elicited by stimulation locally around the electrode and in other functionally connected areas. We have developed a technique to record brain activity using the blood oxygen level dependent (BOLD) signal while applying electrical microstimulation to the primate brain. We find that the spread of activity around the electrode tip in macaque area V1 was larger than expected from calculations based on passive spread of current and therefore may reflect functional spread by way of horizontal connections. Consistent with this functional transynaptic spread we also obtained activation in expected projection sites in extrastriate visual areas, demonstrating the utility of our technique in uncovering in vivo functional connectivity maps.
Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be Ž . referred to as the eye field within the dorsomedial frontal cortex DMFC ; the other resides dorsolaterally within the frontal cortex and is Ž . commonly referred to as the frontal eye field FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only. Imaging experiments conducted on humans have corroborated these findings. A feature that distinguishes the DMFC from the FEF is that the DMFC contains a somatotopic map with eyes represented rostrally and hindlimbs represented caudally; the FEF has no such topography. Furthermore, experiments have revealed that Ž . the DMFC tends to contain a craniotopic i.e., head-centered code for the execution of saccadic eye movements, whereas the FEF Ž . contains a retinotopic i.e., eye-centered code for the elicitation of saccades. Imaging and unit recording data suggest that the DMFC is more involved in the learning of new tasks than is the FEF. Also with continued training on behavioural tasks the responsivity of the DMFC tends to drop. Accordingly, the DMFC is more involved in learning operations whereas the FEF is more specialized for the execution of saccadic and smooth pursuit eye movements. q
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.