Here we report the identification of small molecules that specifically inhibit protein arginine N-methyltransferase (PRMT) activity. PRMTs are a family of proteins that either monomethylate or dimethylate the guanidino nitrogen atoms of arginine side chains. This common post-translational modification is implicated in protein trafficking, signal transduction, and transcriptional regulation. Most methyltransferases use the methyl donor, S-adenosyl-L-methionine (AdoMet), as a cofactor. Current methyltransferase inhibitors display limited specificity, indiscriminately targeting all enzymes that use AdoMet. In this screen we have identified a primary compound, AMI-1, that specifically inhibits arginine, but not lysine, methyltransferase activity in vitro and does not compete for the AdoMet binding site. Furthermore, AMI-1 prevents in vivo arginine methylation of cellular proteins and can modulate nuclear receptor-regulated transcription from estrogen and androgen response elements, thus operating as a brake on certain hormone actions.
Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.
Homologous recombination-based gene targeting using Mus musculus embryonic stem cells has greatly impacted biomedical research. This study presents a powerful new technology for more efficient and less time-consuming gene targeting in mice using embryonic injection of zinc-finger nucleases (ZFNs), which generate site-specific double strand breaks, leading to insertions or deletions via DNA repair by the nonhomologous end joining pathway. Three individual genes, multidrug resistant 1a (Mdr1a), jagged 1 (Jag1), and notch homolog 3 (Notch3), were targeted in FVB/N and C57BL/6 mice. Injection of ZFNs resulted in a range of specific gene deletions, from several nucleotides to .1000 bp in length, among 20-75% of live births. Modified alleles were efficiently transmitted through the germline, and animals homozygous for targeted modifications were obtained in as little as 4 months. In addition, the technology can be adapted to any genetic background, eliminating the need for generations of backcrossing to achieve congenic animals. We also validated the functional disruption of Mdr1a and demonstrated that the ZFN-mediated modifications lead to true knockouts. We conclude that ZFN technology is an efficient and convenient alternative to conventional gene targeting and will greatly facilitate the rapid creation of mouse models and functional genomics research. C ONVENTIONAL gene targeting technology in mice relies on homologous recombination in embryonic stem (ES) cells to target specific gene sequences, most commonly to disrupt gene function (Doetschman et al. 1987;Kuehn et al. 1987;Thomas and Capecchi 1987). Advantages of gene targeting in ES cells are selective target sequence modification, the ability to insert or delete genetic information, and the stability of the targeted mutations through subsequent generations. There are also potential limitations, including limited rates of germline transmission and strain limitations due to lack of conventional ES cell lines (Ledermann 2000;Mishina and Sakimura 2007). Moving the targeted allele from one strain to another requires 10 generations of backcrosses that take 2-3 years. A minimum of 1 year is necessary for backcrossing if speed congenics is applied (Markel et al. 1997).Zinc-finger nucleases (ZFNs) are fusions of specific DNA-binding zinc finger proteins (ZFPs) and a nuclease domain, such as the DNA cleavage domain of a type II endonuclease, FokI (Kim et al. 1996;Smith et al. 1999;Bibikova et al. 2001). A pair of ZFPs provide target specificity, and their nuclease domains dimerize to cleave the DNA, generating double strand breaks (DSBs) (Mani et al. 2005), which are detrimental to the cell if left unrepaired (Rich et al. 2000). The cell uses two main pathways to repair DSBs: high-fidelity homologous recombination and error-prone nonhomologous end joining (NHEJ) (Lieber 1999;Pardo et al. 2009;Huertas 2010). ZFN-mediated gene disruption results from deletions or insertions frequently introduced by NHEJ. Figure 1 illustrates the cellular events following the injec...
Recent advances in genome editing have facilitated the generation of nonhuman primate (NHP) models, with potential to unmask the complex biology of human disease not revealed by rodent models. However, their broader use is hindered by the challenges associated with generation of adult NHP models as well as the cost of their production. Here, we describe the generation of a marmoset model of severe combined immunodeficiency (SCID). This study optimized zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) to target interleukin-2 receptor subunit gamma (IL2RG) in pronuclear stage marmoset embryos. Nine of 21 neonates exhibited mutations in the IL2RG gene, concomitant with immunodeficiency, and three neonates have currently survived from 240 days to 1.8 years. Our approach demonstrates highly efficient production of founder NHP with SCID phenotypes, with promises of multiple pre-clinical and translational applications.
Animal models are critical for gaining insights into autism spectrum disorder (ASD). Despite their apparent advantages to mice for neural studies, rats have not been widely used for disorders of the human CNS, such as ASD, for the lack of convenient genome manipulation tools. Here we describe two of the first transgenic rat models for ASD, developed using zinc-finger nuclease (ZFN) methodologies, and their initial behavioral assessment using a rapid juvenile test battery. A syndromic and nonsyndromic rat model for ASD were created as two separate knockout rat lines with heritable disruptions in the genes encoding Fragile X mental retardation protein (FMRP) and Neuroligin3 (NLGN3). FMRP, a protein with numerous proposed functions including regulation of mRNA and synaptic protein synthesis, and NLGN3, a member of the neuroligin synaptic cell-adhesion protein family, have been implicated in human ASD. Juvenile subjects from both knockout rat lines exhibited abnormalities in ASD-relevant phenotypes including juvenile play, perseverative behaviors, and sensorimotor gating. These data provide important first evidence regarding the utility of rats as genetic models for investigating ASD-relevant genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.