Here we report the identification of small molecules that specifically inhibit protein arginine N-methyltransferase (PRMT) activity. PRMTs are a family of proteins that either monomethylate or dimethylate the guanidino nitrogen atoms of arginine side chains. This common post-translational modification is implicated in protein trafficking, signal transduction, and transcriptional regulation. Most methyltransferases use the methyl donor, S-adenosyl-L-methionine (AdoMet), as a cofactor. Current methyltransferase inhibitors display limited specificity, indiscriminately targeting all enzymes that use AdoMet. In this screen we have identified a primary compound, AMI-1, that specifically inhibits arginine, but not lysine, methyltransferase activity in vitro and does not compete for the AdoMet binding site. Furthermore, AMI-1 prevents in vivo arginine methylation of cellular proteins and can modulate nuclear receptor-regulated transcription from estrogen and androgen response elements, thus operating as a brake on certain hormone actions.
Protein arginine methylation is a prevalent posttranslational modification in eukaryotic cells that has been implicated in signal transduction, the metabolism of nascent pre-RNA, and the transcriptional activation processes. In searching the human genome for protein arginine N-methyltransferase (PRMT) family members, a novel gene has been found on chromosome 1 that encodes for an apparent methyltransferase, PRMT6. The polypeptide chain of PRMT6 is 41.9 kDa consisting of a catalytic core sequence common to other PRMT enzymes. Expressed as a glutathione S-transferase fusion protein, PRMT6 demonstrates type I PRMT activity, capable of forming both -N G -monomethylarginine and asymmetric -N G ,N G -dimethylarginine derivatives on the recombinant glycine-and arginine-rich substrate in a processive manner with a specific activity of 144 pmol methyl groups transferred min ؊1 mg ؊1 enzyme. A comparison of substrate specificity reveals that PRMT6 is functionally distinct from two previously characterized type I enzymes, PRMT1 and PRMT4. In addition, PRMT6 displays automethylation activity; it is the first PRMT to do so. This novel human PRMT, which resides solely in the nucleus when fused to the green fluorescent protein, joins a family of enzymes with diverse functions within cells.
Arginine methylation has been implicated in the regulation of gene expression. The coactivator-associated arginine methyltransferase 1 (CARM1͞PRMT4) binds the p160 family of steroid receptor coactivators (SRCs). This association enhances transcriptional activation by nuclear receptors. Here, we show that embryos with a targeted disruption of CARM1 are small in size and die perinatally. The methylation of two known CARM1 substrates, poly(A)-binding protein (PABP1) and the transcriptional cofactor p300, was abolished in knockout embryos and cells. However, CARM1-dependent methylation of histone H3 was not observed. Furthermore, estrogen-responsive gene expression was aberrant in Carm1 ؊/؊ fibroblasts and embryos, thus emphasizing the role of arginine methylation as a transcription activation tag. These findings provide genetic evidence for the essential role of CARM1 in estrogenmediated transcriptional activation.arginine methylation ͉ CARM1 ͉ p300 ͉ PABP ͉ estrogen
The coactivator-associated arginine methyltransferase 1 (CARM1) is recruited to gene promoters by many transcription factors. To identify new pathways that use CARM1, we carried out a comprehensive transcriptome analysis of CARM1-knockout embryos. By using complementary DNA microarrays and serial analysis of gene expression, we identified various genes involved in lipid metabolism that were underrepresented in CARM1-knockout embryos, indicating an important role for this coactivator in adipose tissue biology. We also observed that the amount of brown fat in CARM1-knockout embryos is reduced. Furthermore, cells lacking CARM1 have a severely curtailed potential to differentiate into mature adipocytes. Reporter experiments and chromatin immunoprecipitation analysis show that CARM1 regulates these processes by acting as a coactivator for peroxisome proliferator-activated receptor gamma (PPARc). Together, these results show that CARM1 promotes adipocyte differentiation by coactivating PPARc-mediated transcription and thus might be important in energy balance.
The coactivator-associated arginine methyltransferase, CARM1, is a positive regulator of transcription. Using high density protein arrays, we have previously identified in vitro substrates for CARM1. One of these substrates, TARPP (thymocyte cyclic AMP-regulated phosphoprotein), is expressed specifically in immature thymocytes. Here, we have demonstrated that TARPP is arginine-methylated at a single residue, Arg 650 , both in vitro and in vivo. In addition, recombinant TARPP is not methylated by extracts from Carm1 ؊/؊ cells, indicating that there is no redundancy in this pathway. We show that thymi from Carm1 ؊/؊ embryos (E18.5) have a 5-10-fold reduction in cellularity compared with wild type littermates. Flow cytometric analysis of thymocytes revealed a decrease in the relative proportion of double negative thymocytes in Carm1 ؊/؊ embryos because of a partial developmental arrest in the earliest thymocyte progenitor subset. These results demonstrate that CARM1 plays a significant role in promoting the differentiation of early thymocyte progenitors, possibly through its direct action on TARPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.