Surface air temperature is an important variable in quantifying extreme heat, but high-resolution temporal and spatial measurement is limited by sparse climate-data stations. As a result, hyperlocal models of extreme heat involve intensive physical data collection efforts or analyze satellite-derived land-surface temperature instead. We developed a geostatistical model that integrates in situ climate-quality temperature records, gridded temperature data, land-surface temperature estimates, and spatially consistent covariates to predict monthly averaged daily maximum surface-air temperatures at spatial resolutions up to 30 m. We trained and validated the model using data from North Carolina. The fitted model showed strong predictive performance with a mean absolute error of 1.61 ∘F across all summer months and a correlation coefficient of 0.75 against an independent hyperlocal temperature model for the city of Durham. We show that the proposed model framework is highly scalable and capable of producing realistic temperature fields across a variety of physiographic settings, even in areas where no climate-quality data stations are available.
This paper outlines work in progress on a new method of annotating and quantitatively discussing narrative techniques related to time in fiction. Specifically those techniques are analepsis, prolepsis, narrative level changes, and stream-of-consciousness and free-indirectdiscourse narration. By counting the frequency and extent of the usage of these techniques, the narrative characteristics of different works from different time periods and genres can be compared. This project uses modernist fiction and hypertext fiction as its case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.