In all cases accepted manuscripts should: link to the formal publication via its DOI bear a CC-BY-NC-ND license -this is easy to do, click here to find out how if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article
AbstractThe development and application of evolutionary algorithms (EAs) and other metaheuristics for the optimisation of water resources systems has been an active research field for over two decades. Research to date has emphasized algorithmic improvements and individual applications in specific areas (e.g., model calibration, water distribution systems, groundwater management, river-basin planning and management, etc.). However, there has been limited synthesis between shared problem traits, common EA challenges, and needed advances across major applications. This paper clarifies the current status and future research directions for better solving key water resources problems using EAs. Advances in understanding fitness landscape properties and their effects on algorithm performance are critical. Future EA-based applications to real-world problems require a fundamental shift of focus towards improving problem formulations, understanding general theoretic frameworks for problem decompositions, major advances in EA computational efficiency, and most importantly aiding real decision-making in complex, uncertain application contexts.
With the increase in frequency and severity of flash flood events in major cities around the world, the infrastructure and people living in those urban areas are exposed continuously to high risk levels of pluvial flooding. The situation is likely to be exacerbated by the potential impact of future climate change. A fast flood model could be very useful for flood risk analysis. One-dimensional (1D) models provide limited information about the flow dynamics whereas two-dimensional (2D) models require substantial computational time and cost, a factor that limits their use. This paper presents an alternative approach using cellular automata (CA) for 2D modelling. The model uses regular grid cells as a discrete space for the CA setup and applies generic rules to local neighbourhood cells to simulate the spatio-temporal evolution of pluvial flooding. The proposed CA model is applied to a hypothetical terrain and a real urban area. The synchronous state updating rule and inherent nature of the proposed model contributes to a great reduction in computational time. The results are compared with a hydraulic model and good agreement is found between the two models.
Recent advances in biology (namely, DNA arrays) allow an unprecedented view of the biochemical mechanisms contained within a cell. However, this technology raises new challenges for computer scientists and biologists alike, as the data created by these arrays is often highly complex. One of the challenges is the elucidation of the regulatory connections and interactions between genes, proteins and other gene products. In this paper, a novel method is described for determining gene interactions in temporal gene expression data using genetic algorithms combined with a neural network component. Experiments conducted on real-world temporal gene expression data sets confirm that the approach is capable of finding gene networks that fit the data. A further repeated approach shows that those genes significantly involved in interaction with other genes can be highlighted and hypothetical gene networks and circuits proposed for further laboratory testing.
In recent years an increasing number of real-world many-dimensional optimisation problems have been identified across the spectrum of research fields. Many popular evolutionary algorithms use non-dominance as a measure for selecting solutions for future generations. The process of sorting populations into non-dominated fronts is usually the controlling order of computational complexity and can be expensive for large populations or for a high number of objectives. This paper presents two novel methods for non-dominated sorting: deductive sort and climbing sort. The two new methods are compared to the fast non-dominated sort of NSGA-II and the non-dominated rank sort of the omni-optimizer. The results demonstrate the improved efficiencies of the deductive sort and the reductions in comparisons that can be made when applying inferred dominance relationships defined in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.