The quantification of maximum oxygen uptake (V(O2 max)), a parameter characterizing the effective integration of the neural, cardiopulmonary, and metabolic systems, requires oxygen uptake (VO2) to attain a plateau. We were interested in whether a VO2 plateau was consistently manifest during maximal incremental ramp cycle ergometry and also in ascertaining the relationship between this peak VO2 (V(O2 peak)) and that determined from one, or several, maximal constant-load tests. Ventilatory and pulmonary gas-exchange variables were measured breath by breath with a turbine and mass spectrometer. On average, V(O2 peak) [3.51 +/- 0.8 (SD) l/min] for the ramp test did not differ from that extrapolated from the linear phase of the response in 71 subjects. In 12 of these subjects, the V(O2 peak) was less than the extrapolated value by 0.1-0.4 l/min (i.e., a "plateau"), and in 19 subjects, V(O2 peak) was higher by 0.05-0.4 l/min. In the remaining 40 subjects, we could not discriminate a difference. The V(O2 peak) from the incremental test also did not differ from that of a single maximum constant-load test in 38 subjects or from the V(O2 max) in 6 subjects who undertook a range of progressively greater discontinuous constant-load tests. A plateau in the actual VO2 response is therefore not an obligatory consequence of incremental exercise. Because the peak value attained was not different from the plateau in the plot of VO2 vs. work rate (for the constant-load tests), the V(O2 peak) attained on a maximum-effort incremental test is likely to be a valid index of V(O2 max), despite no evidence of a plateau in the data themselves. However, without additional tests, one cannot be certain.
The tolerable duration of high-intensity, constant-load cycle ergometry is a hyperbolic function of power, with an asymptote termed critical power (CP) and a curvature constant (W') with units of work. It has been suggested that continued exercise after exhaustion may only be performed below CP, where predominantly aerobic energy transfer can occur and W' can be partially replenished. To test this hypothesis, six volunteers each performed cycle-ergometer exercise with breath-by-breath determination of ventilatory and pulmonary gas exchange variables. Initially, four exercise tests to exhaustion were made: 1). a ramp-incremental and 2). three high-intensity constant-load bouts at different work rates, to estimate lactate (theta(L)) and CP thresholds, W', and maximum oxygen uptake (Vo2 max). Subsequently, subjects cycled to the limit of tolerance (for approximately 360 s) on three occasions, each followed by a work rate reduction to 1). 110% CP, 2). 90% CP, and 3). 80% theta(L) for a 20-min target. W' averaged 20.9 +/- 2.35 kJ or 246 +/- 30 J/kg. After initial fatigue, 110% CP was tolerated for only 30 +/- 12 s. Each subject completed 20 min at 80% theta(L), but only two sustained 20 min at 90% CP; the remaining four subjects fatigued at 577 +/- 306 s, with oxygen consumption at 89 +/- 8% Vo2 max. The results support the suggestion that replenishing W' after fatigue necessitates a sub-CP work rate. The variation in subjects' responses during 90% CP was unexpected but consistent with mechanisms such as reduced CP consequent to prior high-intensity exercise, variation in lactate handling, and/or regional depletion of energy substrates, e.g., muscle glycogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.