Collisional mountain belts grow as a consequence of continental plate convergence and eventually disappear under the combined effects of gravitational collapse and erosion. Using a decade of GPS data, we show that the western Alps are currently characterized by zero horizontal velocity boundary conditions, offering the opportunity to investigate orogen evolution at the time of cessation of plate convergence. We find no significant horizontal motion within the belt, but GPS and levelling measurements independently show a regional pattern of uplift reaching ~2.5 mm/yr in the northwestern Alps. Unless a low viscosity crustal root under the northwestern Alps locally enhances the vertical response to surface unloading, the summed effects of isostatic responses to erosion and glaciation explain at most 60% of the observed uplift rates. Rock-uplift rates corrected from transient glacial isostatic adjustment contributions likely exceed erosion rates in the northwestern Alps. In the absence of active convergence, the observed surface uplift must result from deep-seated processes.
SUMMARY
Assessing seismic hazard in continental interiors is difficult because these regions are characterized by low strain rates and may be struck by infrequent destructive earthquakes. In this paper, we provide an example showing that interpretations of seismic cross sections combined with other kinds of studies such as analysis of microseismicity allow the whole seismogenic source area to be imaged in this type of region. The Middle Durance Fault (MDF) is an 80‐km‐long fault system located southeastern France that has a moderate but regular seismicity and some palaeoseismic evidence for larger events. It behaves as an oblique ramp with a left‐lateral‐reverse fault slip and has a low strain rate. MDF is one of the rare slow active fault system monitored by a dedicated dense velocimetric short period network. This study showed a fault system segmented in map and cross section views which consists of staircase basement faults topped by listric faults ramping off Triassic evaporitic beds. Seismic sections allowed the construction of a 3‐D structural model used for accurate location of microseismicity. Southern part of MDF is mainly active in the sedimentary cover. In its northern part and in Alpine foreland, seismicity deeper than 8 km was also recorded meaning active faults within the crust cannot be excluded. Seismogenic potential of MDF was roughly assessed. Resulting source sizes and estimated slip rates imply that the magnitude upper limit ranges from 6.0 to 6.5 with a return period of a few thousand years. The present study shows that the coupling between 3‐D fault geometry imaging and accurate location of microseismicity provides a robust approach to analyse active fault sources and consequently a more refined seismic hazard assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.