Low-molecular-weight heparins (LMWHs) are carbohydrate-based anticoagulants clinically used to treat thrombotic disorders, but impurities, structural heterogeneity or functional irreversibility can limit treatment options. We report a series of synthetic LMWHs prepared by cost-effective chemoenzymatic methods. The high activity of one defined synthetic LMWH against human factor Xa (FXa) was reversible in vitro and in vivo using protamine, demonstrating that synthetically accessible constructs can have a critical role in the next generation of LMWHs.
Antiphospholipid antibodies (Abs) are associated with thrombosis and are a risk factor for recurrent pregnancy loss and obstetric complications in patients with the antiphospholipid syndrome. It is generally accepted that the major autoantigen for aPL Abs is beta (2) glycoprotein I, which mediates the binding of aPL Abs to target cells (i.e., endothelial cells, monocytes, platelets, trophoblasts, etc.) leading to thrombosis and fetal loss. This article addresses molecular events triggered by aPL Abs on endothelial cells, platelets, and monocytes and complement activation, as well as a review of the current knowledge with regard to the putative receptor(s) recognized by aPL Abs on target cells as well as novel mechanisms that involve fibrinolytic processes. A section is devoted to the description of thrombotic and inflammatory processes that lead to obstetric complications mediated by aPL Abs. Based on experimental evidence using in vitro and in vivo models, new targeted therapies for treatment and/or prevention of thrombosis and pregnancy loss in antiphospholipid syndrome are proposed.
Objective. To study the intracellular mechanism involved in the up-regulation of tissue factor (TF) on endothelial cells (ECs) by antiphospholipid antibodies (aPL), we examined the effects of aPL on the transcription, expression, and function of TF, the expression of interleukin-6 (IL-6) and IL-8, the induction of inducible nitric oxide synthase (iNOS), and the phosphorylation of p38 MAPK on human umbilical vein ECs (HUVECs).Methods. Cultured HUVECs were treated with IgG aPL (from patients with antiphospholipid syndrome [APS]) or with control IgG (from normal human serum). Phorbol myristate acetate (PMA) and bacterial lipopolysaccharide (LPS) were used as positive controls. TF expression was determined on the surface of HUVECs using an enzyme-linked immunosorbent assay (ELISA). TF activity was determined with the use of a chromogenic assay in cell lysates, and TF messenger RNA (mRNA) was determined by real-time quantitative polymerase chain reaction. Phosphorylation of p38 MAPK and induction of iNOS were determined by Western blotting, and levels of IL-6 and IL-8 were determined by ELISA.Results. PMA, LPS, and aPL significantly increased the expression of TF compared with controls. This up-regulation was significantly inhibited by SB203580 (a specific inhibitor of p38 MAPK) and by MG132 (a specific inhibitor of NF-B). TF activity was significantly increased by treatment with IgG aPL and this effect was also inhibited by SB203580. Incubation of HUVECs with aPL increased TF mRNA 2-15-fold; these effects were abrogated by SB203580. IgG aPL induced significant phosphorylation of p38 MAPK and produced iNOS on HUVECs in a time-dependent manner. Treatment with IgG aPL also induced increased expression of IL-6 and IL-8 on HUVECs.Conclusion. Our data show that aPL induces significant increases in TF transcription, function, and expression, in IL-6 and IL-8 up-regulation, and in iNOS expression on HUVECs and that these processes involve phosphorylation of p38 MAPK and activation of NF-B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.