GH participates in growth, metabolism, and cellular differentiation. To study these roles, we previously generated two different dwarf mouse lines, one expressing a GH antagonist (GHA) and the other having a disrupted GH receptor and binding protein gene (GHR -/-). In this study we compared the two dwarf lines in the same genetic background (C57BL/6J). One of the most striking differences between the mouse lines was their weight gain profile after weaning. The weights of the GHA dwarfs gradually approached controls over time, but the weights of the GHR -/- dwarfs remained low throughout the analysis period. Additionally, fasting insulin and glucose levels were reduced in the GHR -/- mice but normal in the GHA mice. IGF-I and IGF binding protein 3 (IGFBP-3) levels were significantly reduced, but by different degrees, in both mouse lines, but IGFBP-1 and -4 levels were reduced and IGFBP-2 levels increased in GHR -/- mice but unaltered in GHA mice. Finally, life span was significantly extended for the GHR -/- mice but remained unchanged for GHA dwarfs. These results suggest that the degree of blockade of GH signaling can lead to dramatically different phenotypes.
Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the ‘somatopause’, has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.