SummarySkim milks were pre-acidified to pH 6·4 and concentrated by ultra-filtration to give retentates with protein levels of 210 g/1. Retentates were blended with skim milk and cream to give standardized milks with protein levels ranging from 30 to 82 g/1. These were used for the manufacture of Cheddar cheese in conventional equipment. Increasing milk protein level resulted in reduced gelation times, increased curd firming rates and a decrease in the set-to-cut time when cutting at equal firmness values (i.e. elastic modulus, G′, ∼ 16 Pa). As the curd firming rates increased with milk protein level, it became increasingly difficult to cut the curd cleanly, without tearing, before the end of the cutting cycle. Reflecting the tearing of curd, and consequent curd particle shattering, fat losses in the running wheys were greater than those predicted on the basis of volume reduction (due to ultrafiltration) for milks with protein levels > 50 g/1. Reduction of setting temperatures, in the range 31–27 °C, and the level of added rennet brought the set-to-cut times and curd firming rates of concentrated milks closer to those of the control milk. While increasing milk protein level in the range 30–70 g/1 had little effect on cheese composition, it resulted in slower proteolysis and maturation.
Twenty-three Cheddar cheeses were prepared from milks with a protein content of 3.66% (wt/wt) and with different protein-to-fat ratio (PFR) in the range 0.70 to 1.15; the PFR of each milk differed by 0.02. For statistical analysis, the 23 cheeses were divided into 3 PFR groups: low (LPFR; 0.70 to 0.85), medium (MPFR; 0.88 to 1.00) and high (HPFR; 1.01 to 1.15), which were compared using ANOVA. The numbers of PFR values in the LPFR, MPFR, and HPFR groups were 9, 7, and 7, respectively. Data were also analyzed by linear regression analysis to establish potentially significant relationships among the PFR and response variables. Increasing PFR significantly increased the levels of cheese moisture, protein, Ca, and P, but significantly reduced the levels of moisture in nonfat substances, fat-in-DM, and salt-in-moisture. The percentage of milk fat recovered in the LPFR cheese was significantly lower than that in the MPFR or HPFR cheeses. In contrast, the recovery of water from milk to the LPFR cheese was significantly higher than that in the MPFR or HPFR cheeses. Increasing the PFR led to a significant decrease in the actual yield of cheese per 100 kg of milk but a significant increase occurred in the normalized yield of cheese per 100 kg of milk with reference values of fat plus protein (3.4 and 3.3%, wt/wt, respectively). The results demonstrate that alteration of the PFR of cheese milk in the range 0.70 to 1.15 has marked effects on cheese composition, component recoveries, and cheese yield.
The compositional and functional properties of commercial retail and/or wholesale samples (n = 8) of low‐moisture mozzarella, cheddar and analogue (pizza) cheeses were compared. Inter‐and intravariety differences were evident with intravariety differences in composition being relatively large for the analogue cheese. Cheddar had the lowest mean pH and level of expressible serum and the highest mean levels of proteolysis, expressible fat, and serum calcium and nitrogen (p < 0.05). Compared to mozzarella, the analogue cheeses had significantly lower (p < 0.05) mean levels of total protein and serum calcium, higher levels of total calcium and higher cheese pH. The mean stretchability of the melted mozzarella cheese was significantly higher than that of the melted cheddar or analogue cheeses. The melted cheddar had the highest mean flowability and lowest mean apparent viscosity (p < 0.05). The mean flowability and apparent viscosity of the analogue cheese were numerically lower and higher, respectively, than those of mozzarella.
Milk was collected from three spring-calving herds,
on different daily
herbage allowances (DHA) of perennial rye-grass (16, 20 or
24 kg dry matter (DM)/cow for a 17 week period. On
five occasions, at weekly intervals in the middle
of the period, the three different milks were converted
into low-moisture part-skim
Mozzarella cheese. Increasing the DHA resulted in significant
increases in the concentrations of protein in the cheesemilk
(P<0·05) and cheese whey
(P<0·02). The moisture-adjusted cheese
yield increased significantly (P<0·01) on
raising the DHA from 16 to 24 kg grass DM/cow. DHA had no
significant effects on any of the
gross compositional values of the cheese (although moisture
and fat-in-DM levels
tended to decrease and increase respectively with increasing
DHA). The hardness of
the uncooked cheese and functionality of cooked cheese
(i.e. melt time, flowability,
stretch and viscosity) were not significantly influenced by
DHA over the 115 d ripening period at 4°C.
Reduced fat milks were pasteurized, for 15 s, at temperatures ranging from 72 to 88°C to give levels of whey protein denaturation varying from ˜ 3 to 35%. The milks were converted into reduced fat cheddar cheese (16–18% fat) in 500 litre cheese vats; the resultant cheese curds were milled at pH values of 5.75 and 5.35. Raising the milk pasteurization temperature resulted in impaired rennet coagulation properties, longer set‐to‐cut times during cheese manufacture, higher cheese moisture and moisture in the non‐fat cheese substance, lower levels of protein and calcium and lower cheese firmness. Increasing the pH at curd milling from 5.35 to 5.75 affected cheese composition and firmness, during ripening, in a manner similar to that of increasing milk pasteurization temperature. Despite their effects on cheese composition and rheology, pasteurization temperature and pH at curd milling had little influence on proteolysis or on the grading scores awarded by commercial graders during ripening over 303 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.