Intramolecularly hydrogen bonded o-hydroxybenzaldehyde (OHBA-C) isblated in 12 K rare gas matrices photolyzes to a non-hydrogen-bonded rotamer (OHBA-F). IR spectra of OHBA-C, OHBA-F, and several model and isotopically substituted compounds are consistent with identification of the OHBA-F conformer as that formed by 180-deg rotation of both the hydroxy and aldehyde groups. For the two rotamers, electronic absorption, excitation, and emission spectra are presented together with time-resolved emission measurements and estimates of a ground-state reaction enthalpy. From these data, it is proposed that the S, state of OHBA-C is an n,r* hydrogen atom transfer state, and Sz is a r,r* proton-transfer state with a large (-18 kcal) barrier to reaction. Rotamerization is reversed by SI or S2 excitation of OHBA-F. The conversion of OHBA-C to OHBA-F is -5 times as efficient as the reverse process upon excitation at the respective SI 0-0 energies. An increase in photolysis quantum yield of OHBA-C is measured at energies well above the 0-0 energy and may correspond to reaction over the proposed -8 kcal SI barrier.
A new tetrafluorophenol activated resin that facilitates the use of 19F NMR to quantitate loading is presented. This new resin provides a useful tool for acylation, and a novel activated polymeric sulfonate ester to generate sulfonamides. This activated resin reacts with a wide scope of N-nucleophiles including primary and secondary amines, and anilines. This new activated resin methodology provides a powerful tool for pure single-compound library synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.