Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis.
Central America (1), natural genetic variations in flowering time enabled early Native Americans to select maize adapted to a range of latitudes and lengths of growing seasons, including the very short summer season typical of the eastern Canadian region of Quebec. Under such conditions, early flowering allows seed to mature before the onset of frost. Flowering time is also a key trait of improved drought tolerance. Indeed, it has been shown that a single day of drought during flowering can decrease yield by as much as 8% (2). One way to address such losses is to develop and grow cultivars characterized by a short cycle and able to flower before predictable drought episodes.The genetic variability available for maize breeding is essentially quantitative; i.e., it involves allelic variation at different quantitative trait loci (QTLs), which are influenced by environmental effects. Although a large body of mapping information on QTLs is available for flowering time (3), relatively little is known about the molecular basis of QTLs, with only one gene, Dwarf8, correlated thus far with quantitative effects (4, 5). Furthermore, a few mutants for flowering time have been described (6, 7), two of which, id1 (8) and dlf1 (9), have been cloned. Our results (i) show that the allelic variation responsible for the major flowering-time QTL, Vegetative to generative transition 1 (Vgt1) (10, 11) on chromosome 8, is confined to an Ϸ2-kb intergenic region upstream of an Ap2-like flowering-time gene, (ii) identify maize-sorghum-rice evolutionarily conserved noncoding sequences (CNSs) within Vgt1, and (iii) support a cisacting transcription-regulatory role for Vgt1. ResultsPositional Cloning of Vgt1. Previous work (12) mapped Vgt1 to a 1.3-cM region (Fig. 1A) on bin 8.05, based on a mapping population derived from the cross N28 ϫ C22-4. The strain C22-4 is nearly isogenic to N28 and carries the early Vgt1 allele in an Ϸ7-cM introgression originating from the early maize variety Gaspé Flint. By using standard positional cloning, Vgt1 was confined to an Ϸ2-kb region (Fig. 1 B-D). Sequence annotation of the original BAC clone and the corresponding sequences derived from N28 and Gaspé Flint genetic backgrounds showed that Vgt1 is apparently noncoding and is located Ϸ70 kb (61-76 kb, depending on the genetic background) upstream of an Ap2-like gene identified here as ZmRap2.7. This gene is orthologous to Rap2.7 (also known as TOE1), a transcription factor that regulates flowering time in Arabidopsis (13,14). No other genes were annotated between Vgt1 and ZmRap2.7. Pseudogenes due to transduplication events mediated by nonautonomous helitron elements (15) were observed in N28 and other genetic backgrounds but not in Gaspé Flint (data not shown). Within the Vgt1 region, the contrasting QTL alleles showed 29 SNPs and insertion/deletion-type polymorphisms (Indels) and one 143-bp insertion into the Gaspé Flint allele of a Mite transposon belonging to the Tourist (16) family [ Fig. 4 Lower and supporting information (SI) Fig. 5].Association M...
Separation of the life cycle of flowering plants into two distinct growth phases, vegetative and reproductive, is marked by the floral transition. The initial floral inductive signals are perceived in the leaves and transmitted to the shoot apex, where the vegetative shoot apical meristem is restructured into a reproductive meristem. In this study, we report cloning and characterization of the maize (Zea mays) flowering time gene delayed flowering1 (dlf1). Loss of dlf1 function results in late flowering, indicating dlf1 is required for timely promotion of the floral transition. dlf1 encodes a protein with a basic leucine zipper domain belonging to an evolutionarily conserved family. Three-dimensional protein modeling of a missense mutation within the basic domain suggests DLF1 protein functions through DNA binding. The spatial and temporal expression pattern of dlf1 indicates a threshold level of dlf1 is required in the shoot apex for proper timing of the floral transition. Double mutant analysis of dlf1 and indeterminate1 (id1), another late flowering mutation, places dlf1 downstream of id1 function and suggests dlf1 mediates floral inductive signals transmitted from leaves to the shoot apex. This study establishes an emergent framework for the genetic control of floral induction in maize and highlights the conserved topology of the floral transition network in flowering plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.