Separation of the life cycle of flowering plants into two distinct growth phases, vegetative and reproductive, is marked by the floral transition. The initial floral inductive signals are perceived in the leaves and transmitted to the shoot apex, where the vegetative shoot apical meristem is restructured into a reproductive meristem. In this study, we report cloning and characterization of the maize (Zea mays) flowering time gene delayed flowering1 (dlf1). Loss of dlf1 function results in late flowering, indicating dlf1 is required for timely promotion of the floral transition. dlf1 encodes a protein with a basic leucine zipper domain belonging to an evolutionarily conserved family. Three-dimensional protein modeling of a missense mutation within the basic domain suggests DLF1 protein functions through DNA binding. The spatial and temporal expression pattern of dlf1 indicates a threshold level of dlf1 is required in the shoot apex for proper timing of the floral transition. Double mutant analysis of dlf1 and indeterminate1 (id1), another late flowering mutation, places dlf1 downstream of id1 function and suggests dlf1 mediates floral inductive signals transmitted from leaves to the shoot apex. This study establishes an emergent framework for the genetic control of floral induction in maize and highlights the conserved topology of the floral transition network in flowering plants.
The maize (Zea mays) floury1 (fl1) mutant was first reported almost 100 years ago, but its molecular identity has remained unknown. We report the cloning of Fl1, which encodes a novel zein protein body membrane protein with three predicted transmembrane domains and a C-terminal plant-specific domain of unknown function (DUF593). In wild-type endosperm, the FL1 protein accumulates at a high level during the period of zein synthesis and protein body development and declines to a low level at kernel maturity. Immunogold labeling showed that FL1 resides in the endoplasmic reticulum surrounding the protein body. Zein protein bodies in fl1 mutants are of normal size, shape, and abundance. However, mutant protein bodies ectopically accumulate 22-kD a-zeins in the g-zein-rich periphery and center of the core, rather than their normal discrete location in a ring at outer edge of the core. The 19-kD a-zein is uniformly distributed throughout the core in wildtype protein bodies, and this distribution is unaffected in fl1 mutants. Pairwise yeast two-hybrid experiments showed that FL1 DUF593 interacts with the 22-kD a-zein. Results of these studies suggest that FL1 participates in protein body formation by facilitating the localization of 22-kD a-zein and that this is essential for the formation of vitreous endosperm.
SUMMARYGene-background interaction is a commonly observed phenomenon in many species, but the molecular mechanisms of such an interaction is less well understood. Here we report the cloning of a maize mutant gene and its modifier. A recessive mutant with a virescent yellow-like (vyl) phenotype was identified in an ethyl methanesulfonate-mutagenized population derived from the maize inbred line B73. Homozygous mutant maize plants exhibited a yellow leaf phenotype after emergence but gradually recovered and became indistinguishable from wild-type plants after approximately 2 weeks. Taking the positional cloning approach, the Chr.9_ClpP5 gene, one of the proteolytic subunits of the chloroplast Clp protease complex, was identified and validated as the candidate gene for vyl. When introgressed by backcross into the maize inbred line PH09B, the mutant phenotype of vyl lasted much longer in the greenhouse and was lethal in the field, implying the presence of a modifier(s) for vyl. A major modifier locus was identified on chromosome 1, and a paralogous ClpP5 gene was isolated and confirmed as the candidate for the vyl-modifier. Expression of Chr.1_ClpP5 is induced significantly in B73 by the vyl mutation, while the expression of Chr.1_ClpP5 in PH09B is not responsive to the vyl mutation. Moreover, expression and sequence analysis suggests that the PH09B Chr.1_ClpP5 allele is functionally weaker than the B73 allele. We propose that functional redundancy between duplicated paralogous genes is the molecular mechanism for the interaction between vyl and its modifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.