We have previously demonstrated that mouse brain membrane fractions have a specific, saturable receptor for diadenylated nucleotides. Binding is specific for two adenosines, and the length of the phosphate bridge is critical, with four phosphates being optimal [Hilderman et al. (1991) J. Biol. Chem. 266, 6915-6918]. In this report, we demonstrate that adenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) binding to its receptor is dependent upon an activation step that requires divalent cations and a serine protease. Monoclonal antibodies (Mabs) are identified that inhibit Ap4A binding to its membrane receptor. These antibodies recognize a 212-kDa membrane protein. However, SDS-PAGE analysis of Ap4A cross-linked to membrane fractions reveals that Ap4A is not attached to the 212-kDa peptide but to a 30-kDa polypeptide. Appearance of the 30-kDa polypeptide is dependent on the activation step, and one of the inhibitory antibodies blocks its appearance. We suggest that the protease-dependent processing step involves cleavage of the 212-kDa component with the appearance of an active 30-kDa receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.