NFAT upregulation has been linked to cellular transformation intrinsically, but it is unclear whether and how tissue cells with NFAT activation change the local environment for tumor initiation and progression. Direct evidence showing NFAT activation initiates primary tumor formation in vivo is also lacking. Using inducible transgenic mouse systems, we show that tumors form in a subset of, but not all, tissues with NFATc1 activation, indicating that NFAT oncogenic effects depend on cell types and tissue contexts. In NFATc1-induced skin and ovarian tumors, both cells with NFATc1 activation and neighboring cells without NFATc1 activation have significant upregulation of c-Myc and activation of Stat3. Besides known and suspected NFATc1 targets, such as Spp1 and Osm, we have revealed the early upregulation of a number of cytokines and cytokine receptors, as key molecular components of an inflammatory microenvironment that promotes both NFATc1+ and NFATc1− cells to participate in tumor formation. Cultured cells derived from NFATc1-induced tumors were able to establish a tumorigenic microenvironment, similar to that of the primary tumors, in an NFATc1-dependent manner in nude mice with T cell deficiency, revealing an addiction of these tumors to NFATc1 activation and downplaying a role for T cells in the NFATc1-induced tumorigenic microenvironment. These findings collectively suggest that beyond the cell autonomous effects on the upregulation of oncogenic proteins, NFATc1 activation has non-cell autonomous effects through the establishment of a promitogenic microenvironment for tumor growth. This study provides direct evidence for the ability of NFATc1 in inducing primary tumor formation in vivo and supports targeting NFAT signaling in anti-tumor therapy.
Purpose We genetically disrupted the Wolffian duct (WD) in mice to study the affected organogenesis processes and to test the hypothesis that cell loss can be the developmental basis for a wide spectrum of congenital anomalies in the kidney and urinary tract. Materials and Methods We use Hoxb7-Cre transgenic lines (HC1 and HC2) to induce diphtheria toxin (DT) production from a ROSADTA allele, disrupting the wolffian duct and derivatives. Results The first set of mutants (HC1;ROSADTA/+) exhibited agenesis of the kidney, ureter, and reproductive tracts. The second set of mutants (HC2;ROSADTA/+) exhibited diverse defects, including renal agenesis/hypoplasia, hydronephrosis, hydroureter, ureter-vas deferens fistulas in males and ureter-oviduct/uterus fistulas in females. The phenotypic differences correspond to the degree of apoptosisinduced caudal truncation of the wolffian duct, which is less severe and more variable in HC2;ROSADTA/+ mice. Whenever the wolffian duct failed to reach the urogenital sinus, the ureter failed to separate from the wolffian duct, suggesting that ureteral migration along the common nephric duct to the cloaca and the subsequent common nephric duct degeneration constitute the only pathway for separating the ureter and WD derivatives. Conclusions The diverse and severe defects observed emphasize the central role of the wolffian duct in providing progenitors and signals for urogenital development. These results also indicate that the quantitative difference in cell deathinduced caudal truncation of the wolffian duct can lead to a wide range of qualitatively distinct defects, and that cell death can serve as a single etiological cause of a wide spectrum of congenital kidney and urinary tract defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.