A systematic evaluation of the value and potential of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure has been undertaken. The reproducibility and robustness of the method has been assessed using environmental DNA samples isolated directly from PCB-polluted or pristine soil, and subsequent polymerase chain reaction (PCR) amplification of total community 16S rDNA. An initial investigation to assess the variability both within and between different polyacrylamide gel electrophoresis (PAGE) runs showed that almost identical community profiles were consistently produced from the same sample. Similarly, very little variability was observed as a result of variation between replicate restriction digestions, PCR amplifications or between replicate DNA isolations. Decreasing concentrations of template DNA produced a decline in both the complexity and the intensity of fragments present in the community profile, with no additional fragments detected in the higher dilutions that were not already present when more original template DNA was used. Reducing the number of cycles of PCR produced similar results. The greatest variation between profiles generated from the same DNA sample was produced using different Taq DNA polymerases, while lower levels of variability were found between PCR products that had been produced using different annealing temperatures. Incomplete digestion by the restriction enzyme may, as a result of the generation of partially digested fragments, lead to an overestimation of the overall diversity within a community. The results obtained indicate that, once standardized, T-RFLP analysis is a highly reproducible and robust technique that yields high-quality fingerprints consisting of fragments of precise sizes, which, in principle, could be phylogenetically assigned, once an appropriate database is constructed.
During screening for biosurfactant-producing, n-alkane-degrading marine bacteria, six heterotrophic bacterial strains were isolated from enriched mixed cultures, obtained from sea waterkediment samples collected near the Isle of Borkum (North Sea), using Mihagol-S (C,,,,-n-al kanes)as principal carbon source. These Gram-negative, aerobic, rod-shaped bacteria use a limited number of organic compounds, including aliphatic hydrocarbons, volatile fatty acids, and pyruvate and its methyl ether. During cultivation on n-alkanes as sole source of carbon and energy, all strains produced both extracellular and cell-bound surface-active glucose lipids which reduced the surface tension of water from 72 to 29 mN m-' (16). This novel class of glycolipids was found to be produced only by these strains. The 165 rRNA gene sequence analysis showed that these strains are all members of the y-subclass of the Proteobacteria. Their phospholipid ester-linked fatty acid composition was shown to be similar to that of members of the genus Halomonas, although they did not demonstrate a close phylogenetic relationship to any previously described species. On the basis of the information summarized above, a new genus and species, Akaniworax borkumensis, is described to include these bacteria. Strain SKZT is the type strain of A. borkumensis.
The Editorial Board of the International Code of Nomenclature of Prokaryotes here explains the proposed procedure towards the production of the next revision of the Prokaryotic Code, to include public discussion of a draft version, to be prepared by the editors, followed by balloting of the members of the International Committee on Systematics of Prokaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.