Relationships between the morphology of individual neurones of the spinal superficial dorsal horn (SDH), laminae I and II, and their electrophysiological properties were studied in spinal cord slices prepared from anaesthetized, free-ranging hamsters. Tight-seal, whole-cell recordings were made with pipette microelectrodes filled with biocytin to establish electrophysiological characteristics and to label the studied neurones. Neurones were categorized according to location and size of the somata, the dendritic and axonal pattern of arborization, spontaneous synaptic potentials, evoked postsynaptic currents, pattern of discharge to depolarizing pulses and current-voltage relationships. Data were obtained for 170 neurones; 13 of these had somata in lamina I and 157 in lamina II. Stimulation of the segmental dorsal root evoked a prompt excitatory response in almost every neurone sampled (161/166) with nearly 3/4 displaying putative monosynaptic EPSCs. The majority of neurones (133/170) fitted one of several distinctive morphological categories. To a considerable extent, neurones with a common morphological configuration and neurite disposition shared electrophysiological characteristics. Five of the 13 lamina I neurones were relatively large with extensive dendritic arborization in the horizontal dimension and a prominent axon directed ventrally and contralaterally. These presumptive ventrolateral projection neurones differed structurally and electrophysiologically from the other lamina I neurones, which had ipsilateral, locally arborizing axons and/or branches entering the dorsal lateral funiculus. One hundred and twenty lamina II neurones fitted one of five morphological categories: islet, central, medial-lateral, radial or vertical. Central cells were further divided into three groups on functional features. We conclude that the spinal SDH comprises many types of neurones whose morphological characteristics are associated with specific functional features implying diversity in functional organization of the SDH and in its role as a major synaptic termination for thin primary afferent fibres.
The spinal substantia gelatinosa (SG) is a major termination region for unmyelinated (C) primary afferent fibers; however, how the input it receives from these sensory fibers is processed by SG neurons remains primarily a matter of conjecture. To gain insight on connections and functional interactions between intrinsic SG neurons, simultaneous tight-seal, whole-cell recordings were made from pairs of neurons in rat spinal cord slices to examine whether impulses in one cell generated synaptic activity in the other. Most SG neuron pairs sampled lacked synaptic interaction. Those showing a linkage included a recurring pattern consisting of a monosynaptic, bicuculline-sensitive inhibitory connection from an islet cell to a transient central neuron, each of which received direct excitatory input from different afferent C-fibers. This newly defined inhibitory circuit is postulated to represent a SG neural module by which a nociceptive C-fiber input to transient central cells is modified by other C-fiber messages.
SUMMARY1. The characteristics of receptors from the hairy skin of the hind limb of cat were studied by recording from single primary afferent fibres with fine micropipettes. The distinctive features of 513 fibres conducting under 51 m/sec are described.2. Seventy-four fibres conducting between 6 and 37 m/sec were classified as nociceptors because they responded only to damaging mechanical stimulation of the skin. These fibres responded maximally to pinching the skin with a serrated forceps or to cutting the skin. Noxious heat, noxious cold, acid applied to the receptive field and bradykinin injected into skin cuts did not evoke discharges from such receptors. Typically their receptive fields were 2-5 cm long by 1-2 5 cm wide and consisted of responsive spots (under 1 mm diameter) separated by unresponsive areas. There was a tendency for the most slowly conducting fibres so classified to be the least sensitive.3. Other afferent fibres had receptive fields similar to the nociceptors; however, they were excited by substantial but not noxious mechanical deformation. Their conduction velocities overlapped those of the nociceptors and extended upwards to 51 m/sec; the most rapidly conducting fibres tended to be the most sensitive to mechanical stimuli. These insensitive mechanoreceptors or moderate pressure receptors adapted more slowly than the nociceptors.4. The majority of fine myelinated axons originated from hair receptors and had conduction velocities concentrated between 14 and 22 m/sec.5. The possible relation of these observations to pain and reactions typical of pain is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.