Amyloid plaques are a neuropathological hallmark of Alzheimer's disease (AD), but their relationship to neurodegeneration and dementia remains controversial. In contrast, there is a good correlation in AD between cognitive decline and loss of synaptophysin-immunoreactive (SYN-IR) presynaptic terminals in specific brain regions. We used expression-matched transgenic mouse lines to compare the effects of different human amyloid protein precursors (hAPP) and their products on plaque formation and SYN-IR presynaptic terminals. Four distinct minigenes were generated encoding wild-type hAPP or hAPP carrying mutations that alter the production of amyloidogenic A peptides. The platelet-derived growth factor  chain promoter was used to express these constructs in neurons. hAPP mutations associated with familial AD (FAD) increased cerebral A 1-42 levels, whereas an experimental mutation of the -secretase cleavage site (671 M3I ) eliminated production of human A.High levels of A 1-42 resulted in age-dependent formation of amyloid plaques in FAD-mutant hAPP mice but not in expression-matched wild-type hAPP mice. Yet, significant decreases in the density of SYN-IR presynaptic terminals were found in both groups of mice. Across mice from different transgenic lines, the density of SYN-IR presynaptic terminals correlated inversely with A levels but not with hAPP levels or plaque load. We conclude that A is synaptotoxic even in the absence of plaques and that high levels of A 1-42 are insufficient to induce plaque formation in mice expressing wild-type hAPP. Our results support the emerging view that plaque-independent A toxicity plays an important role in the development of synaptic deficits in AD and related conditions.
To elucidate the role of the synaptic protein alpha-synuclein in neurodegenerative disorders, transgenic mice expressing wild-type human alpha-synuclein were generated. Neuronal expression of human alpha-synuclein resulted in progressive accumulation of alpha-synuclein-and ubiquitin-immunoreactive inclusions in neurons in the neocortex, hippocampus, and substantia nigra. Ultrastructural analysis revealed both electron-dense intranuclear deposits and cytoplasmic inclusions. These alterations were associated with loss of dopaminergic terminals in the basal ganglia and with motor impairments. These results suggest that accumulation of wild-type alpha-synuclein may play a causal role in Parkinson's disease and related conditions.
Fig. 2.Transformants releasing EC suffered less damage than control lines when EPNs were present. (A) Root damage measured on plants that had received neither WCR eggs nor nematodes was minimal, and there was no difference between transformed and nontransformed plants (n ϭ 5, P ϭ 0.87). (B) Root damage on plants that received only WCR eggs, but no nematodes, was substantial. Again, no significant difference was found between the transformed and nontransformed plants (n ϭ 5, P ϭ 0.18). (C) In plots that received WCR eggs and H. megidis, roots from transformed plants (pooled) had significantly less damage than roots from control lines (n ϭ 30, P ϭ 0.007). Approximately one-quarter of the transformed plants were found not to emit EC. Removing these plants from the statistical analysis did not significantly affect the results. The letters above the bars indicate significant differences within a graph. Error bars indicate standard errors.
We identified axonal defects in mouse models of Alzheimer's disease that preceded known disease-related pathology by more than a year; we observed similar axonal defects in the early stages of Alzheimer's disease in humans. Axonal defects consisted of swellings that accumulated abnormal amounts of microtubule-associated and molecular motor proteins, organelles, and vesicles. Impairing axonal transport by reducing the dosage of a kinesin molecular motor protein enhanced the frequency of axonal defects and increased amyloid-beta peptide levels and amyloid deposition. Reductions in microtubule-dependent transport may stimulate proteolytic processing of beta-amyloid precursor protein, resulting in the development of senile plaques and Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.