Mechanical parameters of Scots pine wood (Pinus sylvestris L.) of low (about 8%) and high (higher than the fiber saturation point) moisture content (MC) subjected to tensile stress along the grains were studied. The measurements were performed for microtome samples sliced from either earlywood or latewood and for samples containing both earlywood and latewood. The effect of MC on the mechanical properties of earlywood and latewood of Scots pine was different. The MC was found to have greater influence on the tensile strength and modulus of elasticity in latewood than in earlywood, but its effect on strain at failure was greater in earlywood. As determined individually for earlywood and latewood, the tensile strength, modulus of elasticity, and the strain at failure that were calculated from the rule of mixtures (the weighted mean for earlywood and latewood) did not differ significantly from the values found in the samples containing both zones. This similarity was observed at low and high MC.
IntroductionIt has been known for a long time that the effect of moisture on mechanical parameters of wood during tensile stress is different for early and latewood. As follows from the studies from the 1960s on pine wood (Pinus taeda L.), an increase in the moisture content from an air-dry state to a wet state leads to a decrease in the tensile strength of only 13% for earlywood and as much as 30% for latewood (Biblis, 1969). According to the measurements performed on Douglas-fir wood (Pseudotsuga menziesii Franco), the tensile strength of earlywood in an air-dry state is practically the same as in a wet state, and its linear modulus of elasticity in a wet state is about 20% lower than in an air-dry state. Specific work to ultimate load of wet earlywood can be 16% higher than that of air-dry wood. The tensile strength and modulus of elasticity of wet latewood are over 40% lower and the specific work to ultimate load is 50% lower than their correspondents in air-dry latewood (Helińska-Raczkowska and Raczkowski, 1979). Recently, Roszyk et al. (2013) showed that for, pine wood (Pinus sylvestris L.), the main mechanical parameters of earlywood subjected to tensile stress (immediate strength, modulus of elasticity, stress at the proportional limit) are practically independent of its moisture content. However, they reported that wet earlywood becomes damaged at a higher strain than air-dry wood. Although the main
The objective of this study was to determine normal impedance on the surface as well as sound absorption coefficients for several wood species from Europe and from the tropical zone. The mathematical models of Miki, Attenborough, and Allard – dealing with acoustic properties of porous materials – have also been compared. The air flow resistivity exhibits a distinct link between fiber dimensions and wood porosity. The highest sound absorption coefficient was found for oak, ash, sapeli, and pine woods at 2 kHz frequency. The Attenborough model provides results closest to laboratory measurements, although it still requires significant improvements. The Miki and Allard models have some drawbacks and should be applied with reservation for the determination of wood acoustic properties.
European ash (Fraxinus excelsior L.) is one of the species commonly used for wood thermal modification that improves its performance. The presented research aimed to investigate a moisture-dependent strength anisotropy of thermally-modified European ash in compression. Wood samples were modified at 180 °C and 200 °C. Their mechanical parameters were determined in the principal anatomical directions under dry (moisture content of 3%) and wet (moisture content above fibre saturation point) conditions. Effect of heat treatment temperature and moisture content on the ash wood mechanical parameters concerning each anatomical direction were determined. The results show that thermal treatment kept the intrinsic anisotropy of wood mechanical properties. It decreased wood hygroscopicity, which resulted in improved strength and elasticity measured for wet wood when compared to untreated and treated samples. Higher treatment temperature (200 °C) increased wood elasticity in compression in all the anatomical directions despite wood moisture content during the measurements. Multivariate analysis revealed that the modification temperature significantly affected the modulus of elasticity perpendicular to the grain, while in the case of compression strength, the statistically significant effect was observed only parallel to the grain. The results obtained can be useful from an industrial perspective and can serve as part of a database for further modelling purposes.
The aim of this study was to evaluate some of the properties of densified poplar and birch wood earlier subjected to partial delignification of cell walls. The effects of delignification are presented as a comparison of the content of basic structural components in wood before and after chemical modification. In birch wood, the lignin content decreased by 20%, while that of cellulose decreased by 9.7% and that of hemicellulose decreased by 64.9%. In poplar, the lignin content decreased by 34.1%, that of cellulose decreaed by 13.5%, and that of hemicellulose decreased by 58.0%. The hardness of densified birch and poplar wood, after partial reduction of chemical components, was 147 and 111 MPa, respectively, and, compared with natural (non-densified) wood, was almost 4.5 times and 7 times higher, respectively. Poplar wood was more densified (without delignification 238% and after delignification 281%). In the case of birch wood, the density levels were 176% and 188%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.