Shift and ballistic photovoltaic currents, previously indistinguishable experimentally, can now be separated.
A test system was designed to evaluate the failure behavior of a thin-wall small-diameter polyethylene tube under internal pressure. The test setup was capable of delivering constant (static) and cyclic (dynamic) pressure patterns as well as maintaining an elevated testing temperature to accelerate the failure. Desired pressure patterns were obtained by controlling the opening/closing duration of the solenoid valves accordingly. A water-sensing system was used to detect the failure time, particularly for small brittle failure. A data acquisition system based on LabView™ was used to control and record the applied pressures and the failure times. The constant pressure tests were performed at 65 and 75⁰C and the cyclic pressure tests were performed at 75⁰C. The test data obtained from the constant pressure tests exhibited two distinguishable linear regions in a log-log plot of hoop stress versus failure time. Slope values of -0.034 and -0.113 were obtained for ductile and brittle regions, respectively. A brittle failure curve with slope of -0.039 was obtained under the cyclic pressure testing condition. The slow crack growth (SCG) failure was considerably accelerated by the cyclic loading.
Lightning is a transient, high-current discharge occurring within a thundercloud, between clouds, or between a cloud and the ground. Cloud-to-ground (CG) lightning is the most studied because of its impact on human life. The aim of this study is to elucidate the effects of lightning in Earth materials by simulating the lightning current discharges in a laboratory setting. Technical applications of this work include the study or development of customized materials used to prevent accidents, limit damage, or reduce interruptions in electrical power system owing to lightning strikes, such as lightning arresters or high-voltage fuses. High-voltage electrical arcs were discharged through rock specimens, and power, energy, and duration of discharge were estimated to provide a better understanding of the origin of naturally occurring fulgurites (shock-impact glasses) and the lightning/rock interaction. X-ray powder diffraction showed that the samples used for the experiment represent basalt (samples A0, A1–A4) and granite (samples B1, B2). Optical microscopy provides direct evidence that materials can be physically altered due to the heat generated by an arcing event. Optical microscopy observations showed that arcs passed through the target rocks and mimicked the effect of lightning strikes hitting the surface of the rock, melting the target rock, and passing to ground. Fulgurite glass observed on basalt samples shows the impact origin lining the surface of millimeter-size craters and a slash-like coating, whereas in the granite sample, the fulgurite was not observed because the arc passed directly to the laboratory ground. Significant differences in the duration of the experimental electrical arcs that passed through dry and wet samples (A1 and A3; A2 and A4, respectively) were observed. This discrepancy can be ascribed to the variation of the electrical properties related to the distribution of the water layer on the rock sample and to the occurrence of magnetite grains, which may increase the local conductivity of the sample owing to its electromagnetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.