Abstract-Unmanned Surface Vehicle (USV) is an important application of unmanned systems and these USVs provide safe and secure operation in hostile environments. But these USVs are highly reliant on their positioning system such as Global Position System (GPS) and loss of positioning information from GPS can cause catastrophe. To overcome this positioning challenge for a USV under GPS denial environment, we propose a real-time positioning algorithm based on radar and satellite images to determine the USV position. The algorithm takes coastline as a registration feature to implement an image registration between a horizontal viewing angle image from a radar and a vertical viewing angle image from a satellite. The contributions of this paper consist of two parts. Firstly, a coastline feature extraction method based on edge gray features for both radar and satellite images is provided. Secondly, a high efficiency image registration method which takes the dimensionality reduction distance as an indicator was proposed for USV embedded system. The results from six typical application scenarios show that the maximum positioning error of the proposed algorithm is 28.02 m under the worst case. A continuous positioning experiment shows that the average error of the algorithm is 9.77m, which indicates that the algorithm can meet the positioning requirements of a USV under GPS denial environment.
Real-time, accurate, and robust localisation is critical for autonomous vehicles (AVs) to achieve safe, efficient driving, whilst real-time performance is essential for AVs to achieve their current position in time for decision making. To date, no review paper has quantitatively compared the real-time performance between different localisation techniques based on various hardware platforms and programming languages and analysed the relations among localisation methodologies, real-time performance and accuracy. Therefore, this paper discusses the state-of-the-art localisation techniques and analyses their overall performance in AV application. For further analysis, this paper firstly proposes a localisation algorithm operations capability (LAOC)-based equivalent comparison method to compare the relative computational complexity of different localisation techniques; then, it comprehensively discusses the relations among methodologies, computational complexity, and accuracy. Analysis results show that the computational complexity of localisation approaches differs by a maximum of about times, whilst accuracy varies by about 100 times. Vision-and data fusion-based localisation techniques have about 2-5 times potential for improving accuracy compared with lidar-based localisation. Lidar-and vision-based localisation can reduce computational complexity by improving image registration method efficiency. Data fusion-based localisation can achieve better real-time performance compared with lidar-and vision-based localisation because each standalone sensor does not need to develop a complex algorithm to achieve its best localisation potential. Vehicle-toeverything (V2X) technology can improve positioning robustness. Finally, the potential solutions and future orientations of AVs' localisation based on the quantitative comparison results are discussed.
This paper reviews existing forms of density-based, partitional and hierarchical clustering methods in the context of flight data analysis. Advantages and disadvantages are fully explored with a focus on proposing a clustering-based ensemble framework for monitoring flight data in order to search for anomalies during flight operation. Case studies in selected flight scenarios are provided to demonstrate the potential of clustering methods and their integration with reasoning techniques in detecting abnormal flights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.