The CellKey (MDS Sciex, South San Francisco, CA) system enables comprehensive pharmacological evaluation of cell surface receptors, including G-protein coupled receptors (GPCRs) and tyrosine kinase receptors, using adherent and suspension cell lines and primary cells. A unique application enabled by the ability of the CellKey system to reliably quantify activation of endogenous receptors is receptor panning. This application allows investigators to easily screen disease-relevant cell types for functionally active target receptors by treating cells with a panel of receptor-specific ligands. Receptor panning of multiple cell types including Chinese hamster ovary, human embryonic kidney 293, HeLa, U-937, U-2 OS, and TE671 cells resulted in the identification of many functionally active, differently coupled endogenous GPCRs, some of which have not been previously documented in the literature. Upon detecting GPCR activation in live cells, unique cellular dielectric spectroscopy (CDS) response profiles are generated within minutes that reflect the signaling pathways utilized and have been shown to be characteristic of Gs, Gq, and Gi GPCRs. The fact that the CDS response profiles are predictive of the G-protein coupling mechanism of the receptor was demonstrated by using examples of subtype-selective agonists/antagonists to identify the subtypes of the endogenous histamine and beta-adrenergic receptors expressed in U-2 OS cells. A direct correlation is shown between receptor subtype G-protein coupling and CDS response profile. In addition, complex pharmacology, including detection of partial agonism and Schild analysis for endogenous receptors, is presented. The CellKey system allows investigators to conduct studies using endogenously expressed receptors to generate data that are physiologically relevant and in disease context.
Measurements of ultrasonic quasilongitudinal velocity were made in the muscle fiber plane of excised human myocardium. Multiple adjacent planes across the left ventricular wall were interrogated to assess the transmural dependence of velocity. For each measurement plane, data were obtained in 2-deg increments through the full 360 deg relative to the myofibers. An approximate 1.3% magnitude of anisotropy was observed with maximum velocity along the muscle fibers and minimum velocity perpendicular to the muscle fibers. The known transmural shift in myofiber orientation was evidenced in the anisotropy of velocity as angular shifts between plots obtained from adjacent transmural planes within the same specimen. Measured values of velocity and density were used to estimate the effective C33 and C11 elastic constants of a thin layer of normal myocardium.
Myocardial tissue from areas of myocardial infarction manifests substantial anisotropy of ultrasonic scattering that may be useful for quantitative characterization of the alignment and overall three-dimensional anatomic organization of mature infarct scars.
The content and organization of collagen in the cardiac interstitium may represent significant determinants of the ultrasonic scattering properties of myocardium. This study was designed to investigate the anisotropic backscattering properties of a fibrous soft tissue exhibiting an ordered arrangement of fibers similar to myocardium, but possessing a substantially greater content of collagen. Human Achilles tendon was chosen for this study because it possesses a simple unidirectional arrangement of fibers and a high content of collagen compared to normal myocardium. Integrated (frequency-averaged) backscatter was measured from ten formalin fixed samples of tendon as a function of insonifying angle relative to the fiber axis of the tissue. The samples were insonified in a water bath using a 5-MHz center frequency piezoelectric transducer. Maximum backscatter occurred for insonification perpendicular to the fibers, and minimum backscatter occurred for insonification parallel to the fibers. The mean peak to nadir variation, or magnitude of anisotropy, of integrated backscatter for the ten formalin fixed samples of tendon was 36.3 dB. This compares to 14.5 dB for formalin fixed human myocardium measured in an earlier study by our laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.