Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency.
A complete mode of action human relevance analysis--as distinct from mode of action (MOA) analysis alone--depends on robust information on the animal MOA, as well as systematic comparison of the animal data with corresponding information from humans. In November 2003, the International Life Sciences Institute's Risk Science Institute (ILSI RSI) published a 2-year study using animal and human MOA information to generate a four-part Human Relevance Framework (HRF) for systematic and transparent analysis of MOA data and information. Based mainly on non-DNA-reactive carcinogens, the HRF features a "concordance" analysis of MOA information from both animal and human sources, with a focus on determining the appropriate role for each MOA data set in human risk assessment. With MOA information increasingly available for risk assessment purposes, this article illustrates the further applicability of the HRF for reproductive, developmental, neurologic, and renal endpoints, as well as cancer. Based on qualitative and quantitative MOA considerations, the MOA/human relevance analysis also contributes to identifying data needs and issues essential for the dose-response and exposure assessment steps in the overall risk assessment.
The expression of a battery of trophoblast-specific mRNAs was studied during trophectoderm development in vivo and in vitro to assess the use of these mRNAs as markers of trophoblast differentiation and to examine lineage relationships between various trophectoderm derivatives. In situ hybridization of sectioned day 6.5-18.5 mouse embryos localized mRNAs for mouse placental lactogens I and II and mouse proliferin (PLF) to trophoblast giant cells and proliferin-related protein mRNA to the spongiotrophoblast and giant cell layers. A fifth marker, cDNA 4311, was found only in spongiotrophoblast. Day 3.5 blastocyst outgrowths and day 7.5 diploid extraembryonic ectoderm (EX) and ectoplacental cone (EPC) were then cultured to produce polyploid giant cells in vitro. Cultures were processed for in situ hybridization after 2, 4, or 6 days. EX and EPC both formed secondary giant cells, which expressed all markers in the same sequence as was observed in vivo, and primary giant cells in blastocyst outgrowths expressed the early giant cell markers PLF and PL-I on days 4 and 6 of culture. EPC progressed through the sequence 2 days ahead of EX, indicating commitment of EPC to giant cell formation. These results suggest that EX, EPC, and primary and secondary giant cells all share in a common pathway of differentiation and that the highly ordered sequence of gene expression characteristic of this pathway occurs similarly in vivo and in vitro.
These studies were designed to develop a coculture system using a simple medium to promote development of 1-cell bovine embryos through the 8-16-cell stage to morula and blastocyst stages. Monolayers for coculture were prepared from bovine oviduct epithelial cells (BOEC). In vivo-fertilized 1-2-cell embryos and ova (384) were surgically collected from superovulated cows. In Experiment 1, embryos cocultured in a simple glucose-free and serum-free medium (CZB) developed with superior scores of embryo quality than embryos cocultured in Ham's F-10 with serum, and a greater percentage developed past 8-16 cells than embryos cocultured in CMRL-1066 with serum (p less than 0.05). In Experiment 2, embryos cocultured with fresh BOEC monolayers averaged more (p less than 0.05) cells than did embryos in coculture with frozen-thawed BOEC monolayers or in BOEC-conditioned medium. Without glucose in the simple medium for the first 48 h of culture, more embryos blastulated (p less than 0.01) by Day 5.5 of culture (Day 6.5 of donor's estrous cycle) than embryos in the same medium with glucose present throughout. In Experiment 3, more embryos tended to hatch in BOEC coculture (p less than 0.10) than in conditioned medium. These results show that a chemically simple medium with fresh BOEC monolayers can provide a significant benefit for coculture of early bovine embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.