Abstract. Mobile application markets such as the Android Marketplace and the Amazon Android store provide a centralized showcase of applications that end users can purchase or download for free onto their mobile phones. Despite the influx of applications to the markets, applications are either largely unreviewed or only cursorily reviewed by marketplace maintainers due to the vast number of submissions; furthermore, they rely on user policing and reporting to detect misbehaving applications. This reactive approach to application security, especially when programs can contain bugs, malware, or pirated (inauthentic) code, puts too much responsibility on the end users. In light of this, we propose Juxtapp, a scalable infrastructure for code similarity analysis among Android applications. Juxtapp provides a key solution to a number of problems in Android security, including determining if apps contain copies of buggy code, have significant code reuse that indicates piracy, or are instances of known malware. We evaluate our system using more than 58,000 Android applications and demonstrate that our system scales well and is effective. Our results show that Juxtapp is able to detect: 1) 463 applications with confirmed buggy code reuse of Google-provided sample code that lead to serious vulnerabilities in real-world apps, 2) 34 instances of known malware and variants (including 13 distinct variants of the GoldDream malware), and 3) pirated variants of a popular paid game.
Current app stores distribute some malware to unsuspecting users, even though the app approval process may be costly and timeconsuming. High-integrity app stores must provide stronger guarantees that their apps are not malicious. We propose a verification model for use in such app stores to guarantee that the apps are free of malicious information flows. In our model, the software vendor and the app store auditor collaborate -each does tasks that are easy for her/him, reducing overall verification cost. The software vendor provides a behavioral specification of information flow (at a finer granularity than used by current app stores) and source code annotated with information-flow type qualifiers. A flow-sensitive, context-sensitive information-flow type system checks the information flow type qualifiers in the source code and proves that only information flows in the specification can occur at run time. The app store auditor uses the vendor-provided source code to manually verify declassifications.We have implemented the information-flow type system for Android apps written in Java, and we evaluated both its effectiveness at detecting information-flow violations and its usability in practice. In an adversarial Red Team evaluation, we analyzed 72 apps (576,000 LOC) for malware. The 57 Trojans among these had been written specifically to defeat a malware analysis such as ours. Nonetheless, our information-flow type system was effective: it detected 96% of malware whose malicious behavior was related to information flow and 82% of all malware. In addition to the adversarial evaluation, we evaluated the practicality of using the collaborative model. The programmer annotation burden is low: 6 annotations per 100 LOC. Every sound analysis requires a human to review potential false alarms, and in our experiments, this took 30 minutes per 1,000 LOC for an auditor unfamiliar with the app.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.