An ultradense genetic linkage map with .10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in ''skeleton bin maps,'' which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in ''bins.'' A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http:/ /www.potatogenome.net).
Plant genomes, in particular grass genomes, evolve very rapidly. The closely related A genomes of diploid, tetraploid, and hexaploid wheat are derived from a common ancestor that lived <3 million years ago and represent a good model to study molecular mechanisms involved in such rapid evolution. We have sequenced and compared physical contigs at the Lr10 locus on chromosome 1AS from diploid (211 kb), tetraploid (187 kb), and hexaploid wheat (154 kb). A maximum of 33% of the sequences were conserved between two species. The sequences from diploid and tetraploid wheat shared all of the genes, including Lr10 and RGA2 and define a first haplotype (H1). The 130-kb intergenic region between Lr10 and RGA2 was conserved in size despite its activity as a hot spot for transposon insertion, which resulted in >70% of sequence divergence. The hexaploid wheat sequence lacks both Lr10 and RGA2 genes and defines a second haplotype, H2, which originated from ancient and extensive rearrangements. These rearrangements included insertions of retroelements and transposons deletions, as well as unequal recombination within elements. Gene disruption in haplotype H2 was caused by a deletion and subsequent large inversion. Gene conservation between H1 haplotypes, as well as conservation of rearrangements at the origin of the H2 haplotype at three different ploidy levels indicate that the two haplotypes are ancient and had a stable gene content during evolution, whereas the intergenic regions evolved rapidly. Polyploidization during wheat evolution had no detectable consequences on the structure and evolution of the two haplotypes.
To study genome evolution and diversity in barley (Hordeum vulgare), we have sequenced and compared more than 300 kb of sequence spanning the Rph7 leaf rust disease resistance gene in two barley cultivars. Colinearity was restricted to five genic and two intergenic regions representing <35% of the two sequences. In each interval separating the seven conserved regions, the number and type of repetitive elements were completely different between the two homologous sequences, and a single gene was absent in one cultivar. In both cultivars, the nonconserved regions consisted of ;53% repetitive sequences mainly represented by long-terminal repeat retrotransposons that have inserted <1 million years ago. PCR-based analysis of intergenic regions at the Rph7 locus and at three other independent loci in 41 H. vulgare lines indicated large haplotype variability in the cultivated barley gene pool. Together, our data indicate rapid and recent divergence at homologous loci in the genome of H. vulgare, possibly providing the molecular mechanism for the generation of high diversity in the barley gene pool. Finally, comparative analysis of the gene composition in barley, wheat (Triticum aestivum), rice (Oryza sativa), and sorghum (Sorghum bicolor) suggested massive gene movements at the Rph7 locus in the Triticeae lineage.
The two fungicides azoxystrobin and fenpropimorph are used against powdery mildew and rust diseases in wheat (Triticum aestivumL). Azoxystrobin, a strobilurin, inhibits fungal mitochondrial respiration and fenpropimorph, a morpholin, represses biosynthesis of ergosterol, the major sterol of fungal membranes. Although the fungitoxic activity of these compounds is well understood, their effects on plant metabolism remain unclear. In contrast to the fungicides which directly affect pathogen metabolism, benzo(1,2,3) thiadiazole-7-carbothioic acid S-methylester (BTH) induces resistance against wheat pathogens by the activation of systemic acquired resistance in the host plant. In this study, we monitored gene expression in spring wheat after treatment with each of these agrochemicals in a greenhouse trial using a microarray containing 600 barley cDNA clones. Defence-related genes were strongly induced after treatment with BTH, confirming the activation of a similar set of genes as in dicot plants following salicylic acid treatment. A similar gene expression pattern was observed after treatment with fenpropimorph and some defence-related genes were induced by azoxystrobin, demonstrating that these fungicides also activate a defence reaction. However, less intense responses were triggered than with BTH. The same experiments performed under field conditions gave dramatically different results. No gene showed differential expression after treatment and defence genes were already expressed at a high level before application of the agrochemicals. These differences in the expression patterns between the two environments demonstrate the importance of plant growth conditions for testing the impact of agrochemicals on plant metabolism.
To isolate genes of interest in plants, it is essential to construct bacterial artificial chromosome (BAC) libraries from specific genotypes. Construction and organisation of BAC libraries is laborious and costly, especially from organisms with large and complex genomes. In the present study, we developed the pooled BAC library strategy that allows rapid and low cost generation and screening of genomic libraries from any genotype of interest. The BAC library is constructed, directly organised into a few pools and screened for BAC clones of interest using PCR and hybridisation steps, without requiring organization into individual clones. As a proof of concept, a pooled BAC library of approximately 177,000 recombinant clones has been constructed from the barley cultivar Cebada Capa that carries the Rph7 leaf rust resistance gene. The library has an average insert size of 140 kb, a coverage of six barley genome equivalents and is organised in 138 pools of about 1,300 clones each. We rapidly established a single contig of six BAC clones spanning 230 kb at the Rph7 locus on chromosome 3HS. The described low-cost cloning strategy is fast and will greatly facilitate direct targeting of genes and large-scale intra- and inter-species comparative genome analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.